Terraform core would previously ignore unexpected attributes found in
the state, but since we now need to encode/decode the state according
the schema, the attributes must match the schema.
On any state upgrade, remove attributes no longer present in the schema
from the state. The only change this requires from providers is that
going forward removal of attribute is considered a schema change, and
requires an increment of the SchemaVersion in order to trigger the
removal of the attributes from state.
Our original upgrade guide was drafted while some things were still in
flux and not all of our upgrade tooling was in place yet.
This redraft now attempts to be more specific and direct, showing exact
commands to run and (where relevant) exact error messages that Terraform
might return.
I also took this opportunity for some general copy-editing, though we'll
probably want to do one more pass of that alone (without changing any
content at the same time) before final release.
This new content presumes the existence of a Terraform v0.11.14 release,
which isn't published yet at the time of writing but should be published
before v0.12.0 final, once we've done final verification and review of
the upgrade path including it.
Computed primitive values must see the UnknownConfigValue or they are
assumed to be unchanged. Restrict the usage of the protov5 ComputedKeys
to containers.
- Note that we intentionally omitted it from the sidebar, to reduce confusion.
- Write a summary up top so you can stop reading sooner if you don't actually need this.
With the new ConfigModeAttr, we can now have complex structures come in
as attributes rather than blocks. Previously attributes were either
known, or unknown, and there was no reason to descend into them. We now
need to record the complete path to unknown values within complex
attributes to create a proper diff after shimming the config.
We were previously catching some errors at read time, but some type errors
were panicking because the cty.DynamicPseudoType arguments have no
automatic pre-type-checking done but this code was assuming they would
be objects.
Here we add an explicit validation step that includes both the backend
validation we were previously doing during read and some additional
type checking to ensure the two dynamic arguments are suitably-typed.
Having the separate validation step means that these problems can be
detected by "terraform validate", rather than only in "terraform plan"
or "terraform apply".
This corrects a bug in the HCL 2 scanner where a $ or % symbol would cause
incorrect tokenization if appearing immediately before a " .
This also includes some updates to Go extension libraries that the HCL
update brings in. Some of these changes update to support Unicode 11, but
only when compiling with Go 1.13, so we won't see the effect of these
changes until we start building Terraform with Go 1.13.
If a datasource's dependencies have planned changes, then we need to
plan a read for the data source, because the config may change once the
dependencies have been applied.
First check the ComputedValues field in the config when reading config
field, so that we can detect if there is an unknown value in a
container. Since maps, lists and sets are verified to exist by looking
for a "length" first, an unknown config value in the config is ignored.
If a dynamic block (in the HCL dynamic block extension sense) has an
unknown value for its for_each argument, it gets expanded to a single
placeholder block with all of its attributes set to a unknown values.
We can use this as part of a heuristic to relax our object compatibility
checks for situations where the plan included an object that appears to
be (but isn't necessarily) such a placeholder, allowing for the fact that
the one placeholder block could be replaced with zero or more real blocks
once the for_each value is known.
Previously our heuristic was too strict: it would match only if the only
block present was a dynamic placeholder. In practice, users may mix
dynamic blocks with static blocks of the same type, so we need to be more
liberal to avoid generating incorrect incompatibility errors in such
cases.
This contains an adjustment to how the dynamic blocks extension expands
a dynamic block whose for_each expression is unknown: it now produces an
block whose leaf attributes are all unknown, which is what Terraform had
previously been expecting but it wasn't actually true in practice.
FlattenFunc can return lists and tuples when individual elements are
unknown. Only return an unknown tuple if the number of elements cannot
be determined because it contains an unknown series.
Make sure flatten can handle non-series elements, which were previously
lost due to passing a slice value as the argument.
When slicing a list containing unknown values, the list itself is known,
and slice should return the proper slice of that list.
Make SliceFunc return the correct type for slices of tuples, and
disallow slicing sets.