Module detection currently requires calling the registry to determine
the subdirectory. Since we're not directly accessing the subdirectory
through FolderStorage, and now handling it within terraform so modules can
reference sibling paths, we need to call out to the registry every
time we load a configuration to verify the subdirectory for the module,
which is returned during the Detect.
Record the subdirectories for each module in the top-level of the
FolderStorage path for retrieval during Tree.Load. This lets us bypass
Detection altogether, modules can be loaded without redetecting.
In order to remain backward compatible with some modules, we need to
handle subdirs during Load. This means duplicating part of the go-getter
code path for subDir handling so we can resolve any subDirs and globs
internally, while keeping the entire remote directory structure within
the file storage.
Test that we can get a subdirectory from a tarball (or any other
"packed" source that we support).
The 'tar-subdir-to-parent' test highlights a regression where the
subdirectory module references a module in its parent directory. This
breaks the intended use ofr the subdirectory and the implementation in
go-getter. We need to fix this in terraform, and possible plan warnings
and deprecations for this type of source.
This new option allows importing without configuration present.
Configuration is required by default as a confirmation that the provided resource name is correct, but it can be useful to override this in tools that wrap Terraform to do more involved operations.
The getter.FileDetector was intended to be the final detector, only
converting a path to a file URL and returning a true in all cases. We
want to check for a local module before checking the registry so no
local modules that happen to match a registry module are broken.
Wrap the getter.FileDetector to check the module source's existence
before delegating the search to the registry.
updating the key will cause the FolderStorage hash to change forcing
modules to be re-fetched. This is required because any configurations
using the subDir notation will have the configuration in the wrong
directory.
Terraform was redundantly handling `//dir` notation which should be
handled by go-getter. Rather than allowing go-getter to unpack a subdir
as expected, the subdir was stripped off and accessed through the module
configuration.
This scheme will no longer works now that go-getter supports `*`
subdirectories
(e.g. `//*` would be analogous to `tar --strip-components=1`).
Even though this allows Terraform to use go-getter's native unpacking,
detection is still done separately because Detect requires a `pwd` which
is dependent on the configuration directory and not known to the
global FolderStorage.
Add a getter.Detector for detecting registry modules and looking up
the download location of the latest version. This is essentially a
temporary API until constraint solving is supported by the registry, as
then we'll have to supply the full set of known contraints to the
registry at once for resolution and we will fetch specific versions of
modules.
In #15884 we adjusted the plan output to give an explicit command to run
to apply a plan, whereas before this command was just alluded to in the
prose.
Since releasing that, we've got good feedback that it's confusing to
include such instructions when Terraform is running in a workflow
automation tool, because such tools usually abstract away exactly what
commands are run and require users to take different actions to
proceed through the workflow.
To accommodate such environments while retaining helpful messages for
normal CLI usage, here we introduce a new environment variable
TF_IN_AUTOMATION which, when set to a non-empty value, is a hint to
Terraform that it isn't being run in an interactive command shell and
it should thus tone down the "next steps" messaging.
The documentation for this setting is included as part of the "...in
automation" guide since it's not generally useful in other cases. We also
intentionally disclaim comprehensive support for this since we want to
avoid creating an extreme number of "if running in automation..."
codepaths that would increase the testing matrix and hurt maintainability.
The focus is specifically on the output of the three commands we give in
the automation guide, which at present means the following two situations:
* "terraform init" does not include the final paragraphs that suggest
running "terraform plan" and tell you in what situations you might need
to re-run "terraform init".
* "terraform plan" does not include the final paragraphs that either
warn about not specifying "-out=..." or instruct to run
"terraform apply" with the generated plan file.
In 3ea1592 the plan rendering was refactored to add an extra indirection
of producing a display-oriented plan object first and then rendering from
that object.
There was a logic error while adapting the existing plan rendering code
to use the new display-oriented object: the core InstanceDiff object sets
the "Destroy" flag (a boolean) for both DiffDestroy and DiffDestroyCreate,
and so this code previously checked r.Destroy to recognize the
"destroy-create" case. This was incorrectly adapted to a check for the
display action being DiffDestroy, when it should actually have been
DiffDestroyCreate.
The effect of this bug was to cause the "(forces new resource)"
annotations to not be displayed on attributes, though the resource-level
information still correctly reflected that a new resource was required.
This fix restores the attribute-level annotations.
Previously we just assumed the reader was familiar with the idea of a
graph but didn't explain it.
Since graphs are an implementation detail of Terraform, rather than
essential information needed for new users, this revises the introduction
text to talk only about _dependencies_, which we assume the user is
familiar with as a more practical concept.
Additionally, Paul Hinze did a great talk on how Terraform uses graphs
at HashiConf 2016 which is good additional content for our existing
"Graph Internals" page, which includes a concise explanation of the
basics of graph theory.