This uses an in-memory table of credentials keyed on hostname. This is
the simplest possible credentials source that can actually return
credentials, and is suitable for representing statically-configured
credentials from configuration.
The command package is the main place we need access to these, so that
we can use them during init (to install packages, for example) and so that
we can use them to configure remote backends.
For the moment we're just providing an empty credentials object, which
will start to include both statically-configured and
helper-program-provided credentials sources in subsequent commits.
For situations where no credentials are needed but where a working
CredentialsSource is still required, this variable provides a convenient
way to get a fully-functional-but-empty credentials source.
Although service discovery metadata is usually not sensitive, a service
host may wish to produce different results depending on the requesting
user, such as if users are migrating between two different implementations
that are both running concurrently for some period.
This credentials source wraps another and caches its results in memory
in a map that is keyed on the request hostname.
This should ease the common case of many services operating on the same
hostname by allowing an initial set of credentials to be re-used for
subsequent requests.
This CredentialsSource can serve as an extension point to pass credentials
from an arbitrary external system to Terraform. For example, an external
helper program could fetch limited-time credentials from HashiCorp Vault
and return them, thus avoiding the need for any static configuration to
be maintained locally (except a Vault token!).
So far there are no real programs implementing this protocol, though this
commit includes a basic implementation that we use for unit tests.
This function deals with turning a map derived from some user input
(e.g. in a config file) into a HostCredentials object, if possible. This
will be used as a standard way to specify credentials so we have a place
to add new credentials types in future and have support for those across
all of our map-based CredentialsSources.
This package implements our Terraform-native Service discovery protocol,
which allows us to find the base URL for a particular service given a
hostname that was already validated and normalized by the svchost package.
We're starting to expose a number of so-called "Terraform-native services"
that can be offered under a friendly hostname. The first of these will
be module registry services, as they expand from the public
Terraform Registry to private registry services within Terraform
Enterprise and elsewhere.
This package is for wrangling these "friendly hostnames", which start
their lives as user-specified unicode strings, can be converted to
Punycode for storage and comparison, and can in turn be converted back
into normalized unicode for display to the user.
In order to parse provider, resource and data source configuration from
HCL2 config files, we need to know the relevant configuration schema.
This new method allows Terraform Core to request these from a provider.
This is a breaking change to this interface, so all of its implementers
in this package are updated too. This includes concrete implementations
of the new method in helper/schema that use the schema conversion code
added in an earlier commit to produce a configschema.Block automatically.
Plugins compiled against prior versions of helper/schema will not have
support for this method, and so calls to them will fail. Callers of
this new method will therefore need to sniff for support using the
SchemaAvailable field added to both ResourceType and DataSource.
This careful handling will need to persist until next time we increment
the plugin protocol version, at which point we can make the breaking
change of requiring this information to be available.
Having a reference to the originating source range will allow us to
generate decent error messages if certain references can't be resolved
at interpolation time.
This is not yet populated or used. It will never be populated nor used by
the current HCL/HIL-based interpolation path, but will be used by the
experimental HCL2-based interpolation path to give it the necessary info
to produce diagnostics.
The value-conversion machinery is also needed in the main "terraform"
package to help us populate our HCL2 evaluation scope, so a subset of the
shim functions move here into a new package where they can be public.
Some of them remain private within the config package since they depend
on some other symbols in the config package, and they are not needed
by outside callers anyway.
Previously we were showing only the summaries when converting to a string
error, but HCL generates summaries that indicate only the _type_ of error,
expecting that the detail will give the details, and so we need to show
both in order to produce a useful error message.
This launches Terraform inside a headless dlv configured to accept a
remote debugging process. It's configured this way so it can be easily
used from a debugger GUI integrated into an IDE/editor, but it can also
be used from the CLI by running the command it prints.
Using a remote debugger here is useful even when debugging with the CLI,
since it keeps Terraform's verbose and colorful output from interfering
with the debugger UI.
This new version supports a conversion from object types to map types,
which is important for Terraform because HCL2 { ... } syntax produces
objects but lots of Terraform attributes require maps.
HCL will be the most frequent origin of a source range, so this helper
should make it easier to translate these between the two worlds so we
can more easily use them in native Terraform diagnostics and other
messaging.
Uses Levenshtein distance to decide if the input is similar enough to one
of the given suggestions, and returns that suggestion if so.
The distance threshold of three was arrived at experimentally, and has
no objective basis.
While #16243 added the ability to retry getting a state from S3, Put can
return the same InternalError status. Use the same retry logic when
uploading state to S3.
Add a way to inject network errors by setting an immediate deadline on
open consul connections. The consul client currently doesn't retry on
some errors, and will force us to lose our lock.
Once the consul api client is fixed, this test will fail.
The consul Client is analogous to an http.Client, and we really don't
need more than 1. Configure a single client and store it in the backend.
Replace the default Transport's Dialer to reduce the KeepAlive setting
from 30s to 17s. This avoids racing with the common network timeout
value of 30s, and is also coprime to other common intervals.
This uses the new diagnostics printer for config-related errors in the
main five commands that deal with config.
The immediate motivation for this is to allow HCL2-produced diagnostics
to be printed out in their full fidelity, though it also slightly changes
the presentation of other errors so that they are not presented in all
red text, which can be hard to read on some terminals.
This new method showDiagnostics takes any value that would be accepted by
tfdiags.Append and renders it to the UI.
This is intended to encourage consistent handling of the different kinds
of errors and diagnostics that can be produced, and allow richer error
objects like the HCL2 diagnostics to be easily unwrapped and shown in
their full-fidelity.
Due to the use of interfaces, Diagnostics is not super-friendly to the gob
encoding we currently use for plugin RPC. To mitigate this, we provide
a helper that converts all of the wrapped objects into a predictable flat
structure that we can pre-emptively register with gob.
This means that the decoded Diagnostics still has the same meaning as
the original, though the original wrapped errors (if any) are lost and
thus our errwrap integration won't be effective any longer.
Previously we were using fmt.Sprintf and thus forcing the stringification
of the wrapped error.
Using errwrap allows us to unpack the original error at the top of the
stack, which is useful when the wrapped error is really a hcl.Diagnostics
containing potentially-multiple errors and possibly warnings.
Currently we lean heavily on the Go error type as our primary means of
describing errors, and along with that use several more specialized
implementations of it in different spots for additional capabilities such
as multiple errors in one object, source code range references, etc.
We also have a rather ad-hoc approach of returning an array of warnings
from certain functions along with one or multiple errors.
This rather-disorganized approach makes it hard for us to present
user-facing error messages consistently. As a step towards mitigating
this, package tfdiags provides a model for user-facing error and warning
messages and helper functions for creating them from various other
error and warning types used elsewhere in Terraform.
This mechanism is intended to be used to report errors and warnings where
the audience is the Terraform user, and so it may go a few layers deep
down the call stack into codepaths like config parsing, interpolation, etc
but is primarily a UX concern. The deepest reaches of Terraform core will
continue using "error" as normal, with higher layers preparing error
messages for presentation to the user.
To avoid needing to change the interface of every function that might
generate error diagnostics, the Diagnostics type can be "smuggled" via
an error value through other APIs and then unwrapped at the other end,
though it will lose any naked warnings (without at least one error) along
the way, and so codepaths that are expected to generate warnings
(validation, primarily) should use the concrete Diagnostics type
throughout the call chain.
We have a generated cookie for googlesource.com so that we don't get so rate-limited when cloning Google-hosted Go libraries.
The previous credential was invalidated, so this is a newly-generated one. This credential does nothing except allow us to fetch git repositories from go.googlesource.com with a slightly-higher rate limit.
We don't currently have any need for this information, but we're
propagating it out of helper/schema here pre-emptively so that once we
later have a use for it we will not need to rebuild the providers to gain
access to it.
The long-term expected use-case for this is to have Terraform Core use
static analysis techniques to trace the path of sensitive data through
interpolations so that intermediate results can be flagged as sensitive
too, but we have a lot more work to do before such a thing would actually
be possible.