Do not convert provisioner diagnostics to errors so that users can get
context from provisioner failures.
Return diagnostics from the builtin provisioners that can be annotated
with configuration context and instance addresses.
When an attribute value changes in sensitivity, we previously rendered
this in the diff with a `~` update action and a note about the
consequence of the sensitivity change. Since we also suppress the
attribute value, this made it impossible to know if the underlying value
was changing, too, which has significant consequences on the meaning of
the plan.
This commit adds an equality check of the old/new underlying values. If
these are unchanged, we add a note to the sensitivity warning to clarify
that only sensitivity is changing.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
At the time of this commit we have a proposal #28700 which would, if
accepted, need to reserve a new reference prefix to represent template
arguments.
It seems unlikely that the proposal would be accepted and implemented
before Terraform v1.0 creates additional compatibility constraints, and so
this pre-emptively reserves a few candidate symbol names to allow
something like that proposal to potentially move forward later without
requiring a new opt-in language edition.
If we do move forward with the proposal then we'll select one of these
three reserved names depending on which form of the proposal we decide
to move forward with, and then un-reserve the other two. If we decide to
not pursue this proposal at all then we'll un-reserve all three once
that decision is finalized.
It's unlikely that there is any existing provider which has a resource
type named either "template", "lazy", or "arg", but in that unlikely event
users of that provider can keep using it by adding the "resource."
escaping prefix, such as changing "lazy.foo.bar" into
"resource.lazy.foo.bar".
The current way to refer to a managed resource is to use its resource type
name as a top-level symbol in the reference. This is convenient and makes
sense given that managed resources are the primary kind of object in
Terraform.
However, it does mean that an externally-extensible namespace (the set
of all possible resource type names) overlaps with a reserved word
namespace (the special prefixes like "path", "var", etc), and thus
introducing any new reserved prefix in future risks masking an existing
resource type so it can't be used anymore.
We only intend to introduce new reserved symbols as part of future
language editions that each module can opt into separately, and when doing
so we will always research to try to choose a name that doesn't overlap
with commonly-used providers, but not all providers are visible to us and
so there is always a small chance that the name we choose will already be
in use by a third-party provider.
In preparation for that event, this introduces an alternative way to refer
to managed resources that mimics the reference style used for data
resources: resource.type.name . When using this form, the second portion
is _always_ a resource type name and never a reserved word.
There is currently no need to use this because all of the already-reserved
symbol names are effectively blocked from use by existing Terraform
versions that lack this escape hatch. Therefore there's no explicit
documentation about it yet.
The intended use for this is that a module upgrade tool for a future
language edition would detect references to resource types that have now
become reserved words and add the "resource." prefix to keep that
functionality working. Existing modules that aren't opted in to the new
language edition would keep working without that prefix, thus keeping to
compatibility promises.
Several top-level block types in the Terraform language have a body where
two different schemas are overlayed on top of one another: Terraform first
looks for "meta-arguments" that are built into the language, and then
evaluates all of the remaining arguments against some externally-defined
schema whose content is not fully controlled by Terraform.
So far we've been cautiously adding new meta-arguments in these namespaces
after research shows us that there are relatively few existing providers
or modules that would have functionality masked by those additions, but
that isn't really a viable path forward as we prepare to make stronger
compatibility promises.
In an earlier commit we've introduced the foundational parts of a new
language versioning mechanism called "editions" which should allow us to
make per-module-opt-in breaking changes in the future, but these shared
namespaces remain a liability because it would be annoying if adopting a
new edition made it impossible to use a feature of a third-party provider
or module that was already using a name that has now become reserved in
the new edition.
This commit introduces a new syntax intended to be a rarely-used escape
hatch for that situation. When we're designing new editions we will do our
best to choose names that don't conflict with commonly-used providers and
modules, but there are many providers and modules that we cannot see and
so there is a risk that any name we might choose could collide with at
least one existing provider or module. The automatic migration tool to
upgrade an existing module to a new edition should therefore detect that
situation and make use of this escaping block syntax in order to retain
the existing functionality until all the called providers or modules are
updated to no longer use conflicting names.
Although we can't put in technical constraints on using this feature for
other purposes (because we don't know yet what future editions will add),
this mechanism is intentionally not documented for now because it serves
no immediate purpose. In effect, this change is just squatting on the
syntax of a special block type named "_" so that later editions can make
use of it without it _also_ conflicting, creating a confusing nested
escaping situation. However, the first time a new edition actually makes
use of this syntax we should then document alongside the meta-arguments
so folks can understand the meaning of escaping blocks produced by
edition upgrade tools.
Add `init -migrate-state` flag to indicate automatic state migration is
desired. This flag will be implied by the `-force-copy` flag, since that
would indicate state migration is expected.
If `init` encounters a change to the stored backend configuration, it
will now always return an error when neither `-reconfigure` or
`-migrate-state` is supplied.
Turn the most common legacy output strings into diagnostics, removing
the "see above text" error output.
For the `closed_issue_locker` behavior, this is a migration to an equivalent action.
For the `label_issue_migrater` behavior, this is not replaced and instead it is suggested to use native GitHub functionality for issue transfer. If mostly equivalent behavior is desired via label automation, it may be possible to submit an issue transfer feature request to dessant/label-actions as it is a popular community action or create a new GitHub Action. Please reach out if this is a major issue for your team.
For the `remove_labels_on_reply` behavior, it is equivalent except this initial configuration does not make the collaborators distinction. There is a workflow configuration workaround for setting up per-user ignores for any job/step, so if you desire that here please reach out.
- I'm using distinct subheaders and smaller paragraphs to try and make the info
about apply's two modes more skimmable.
- I'm also adding a separate "Plan Options" subheader (and keeping the section
tiny so it stays snugged up right next to the "Apply Options" one) to make it
extra-clear that Hey, There's More Options, They're Over There.
It's a relatively common mistake to try to refer to a data resource
without including the data. prefix, making Terraform understand it as a
reference to a managed resource.
To help with that case, we'll include an additonal suggestion if we can
see that there's a data resource declared with the same type and name as
in the given address.
Once a plugin process is started, go-plugin will redirect the stdout and
stderr stream through a grpc service and provide those streams to the
client. This is rarely used, as it is prone to failing with races
because those same file descriptors are needed for the initial handshake
and logging setup, but data may be accidentally sent to these
nonetheless.
The usual culprits are stray `fmt.Print` usage where logging was
intended, or the configuration of a logger after the os.Stderr file
descriptor was replaced by go-plugin. These situations are very hard for
provider developers to debug since the data is discarded entirely.
While there may be improvements to be made in the go-plugin package to
configure this behavior, in the meantime we can add a simple monitoring
io.Writer to the streams which will surface th data as warnings in the
logs instead of writing it to `io.Discard`