When rendering planned output changes, we need to filter the plan's
output changes to ensure that only root module outputs which have
changed are rendered. Otherwise we will render changes for submodule
outputs, and (with concise diff disabled) render unchanged outputs also.
Use a single log writer instance for all std library logging.
Setup the std log writer in the logging package, and remove boilerplate
from test packages.
When rendering a diff between current state and projected state, we only
show resources and outputs which have changes. However, we show a full
structural diff for these values, which includes all attributes and
blocks for a changed resource or output. The result can be a very long
diff, which makes it difficult to verify what the changed fields are.
This commit adds an experimental concise diff renderer, which suppresses
most unchanged fields, only displaying the most relevant changes and
some identifying context. This means:
- Always show all identifying attributes, initially defined as `id`,
`name`, and `tags`, even if unchanged;
- Only show changed, added, or removed primitive values: `string`,
`number`, or `bool`;
- Only show added or removed elements in unordered collections and
structural types: `map`, `set`, and `object`;
- Show added or removed elements with any surrounding unchanged elements
for sequence types: `list` and `tuple`;
- Only show added or removed nested blocks, or blocks with changed
attributes.
If any attributes, collection elements, or blocks are hidden, a count
is kept and displayed at the end of the parent scope. This ensures that
it is clear that the diff is only displaying a subset of the resource.
The experiment is currently enabled by default, but can be disabled by
setting the TF_X_CONCISE_DIFF environment variable to 0.
This pull reverts a recent change to backend/local which created two context, one with and one without state. Instead I have removed the state entirely from the validate graph (by explicitly passing a states.NewState() to the validate graph builder).
This changed caused a test failure, which (ty so much for the help) @jbardin discovered was inaccurate all along: the test's call to `Validate()` was actually what was removing the output from state. The new expected test output matches terraform's actual behavior on the command line: if you use -target to destroy a resource, an output that references only that resource is *not* removed from state even though that test would lead you to believe it did.
This includes two tests to cover the expected behavior:
TestPlan_varsUnset has been updated so it will panic if it gets more than one request to input a variable
TestPlan_providerArgumentUnset covers #26035Fixes#26035, #26027
Most of the state package has been deprecated by the states package.
This PR replaces all the references to the old state package that
can be done simply - the low-hanging fruit.
* states: move state.Locker to statemgr
The state.Locker interface was a wrapper around a statemgr.Full, so
moving this was relatively straightforward.
* command: remove unnecessary use of state package for writing local terraform state files
* move state.LocalState into terraform package
state.LocalState is responsible for managing terraform.States, so it
made sense (to me) to move it into the terraform package.
* slight change of heart: move state.LocalState into clistate instead of
terraform
* unlock the state if Context() has an error, exactly as backend/remote does today
* terraform console and terraform import will exit before unlocking state in case of error in Context()
* responsibility for unlocking state in the local backend is pushed down the stack, out of backend.go and into each individual state operation
* add tests confirming that state is not locked after apply and plan
* backend/local: add checks that the state is unlocked after operations
This adds tests to plan, apply and refresh which validate that the state
is unlocked after all operations, regardless of exit status. I've also
added specific tests that force Context() to fail during each operation
to verify that locking behavior specifically.
The validate command should work with the configuration, but when
validate was run at the start of a plan or apply command the state was
inserted in preparation for the next walk. This could lead to errors
when the resource schemas had changes and the state could not be
upgraded or decoded.
* command/console: return in case of errors before trying to unlock remote
state
The remote backend `Context` would exit without an active lock if there
was an error, while the local backend `Context` exited *with* a lock. This
caused a problem in `terraform console`, which would call unlock
regardless of error status.
This commit makes the local and remote backend consistently unlock the
state incase of error, and updates terraform console to check for errors
before trying to unlock the state.
* adding tests for remote and local backends
This is a baby-step towards an intended future where all Terraform actions
which have side-effects in either remote objects or the Terraform state
can go through the plan+apply workflow.
This initial change is focused only on allowing plan+apply for changes to
root module output values, so that these can be written into a new state
snapshot (for consumption by terraform_remote_state elsewhere) without
having to go outside of the primary workflow by running
"terraform refresh".
This is also better than "terraform refresh" because it gives an
opportunity to review the proposed changes before applying them, as we're
accustomed to with resource changes.
The downside here is that Terraform Core was not designed to produce
accurate changesets for root module outputs. Although we added a place for
it in the plan model in Terraform 0.12, Terraform Core currently produces
inaccurate changesets there which don't properly track the prior values.
We're planning to rework Terraform Core's evaluation approach in a
forthcoming release so it would itself be able to distinguish between the
prior state and the planned new state to produce an accurate changeset,
but this commit introduces a temporary stop-gap solution of implementing
the logic up in the local backend code, where we can freeze a snapshot of
the prior state before we take any other actions and then use that to
produce an accurate output changeset to decide whether the plan has
externally-visible side-effects and render any changes to output values.
This temporary approach should be replaced by a more appropriately-placed
solution in Terraform Core in a release, which should then allow further
behaviors in similar vein, such as user-visible drift detection for
resource instances.
Back when we first introduced provider versioning in Terraform 0.10, we
did the provider version resolution in terraform.NewContext because we
weren't sure yet how exactly our versioning model was going to play out
(whether different versions could be selected per provider configuration,
for example) and because we were building around the limitations of our
existing filesystem-based plugin discovery model.
However, the new installer codepath is new able to do all of the
selections up front during installation, so we don't need such a heavy
inversion of control abstraction to get this done: the command package can
select the exact provider versions and pass their factories directly
to terraform.NewContext as a simple static map.
The result of this commit is that CLI commands other than "init" are now
able to consume the local cache directory and selections produced by the
installation process in "terraform init", passing all of the selected
providers down to the terraform.NewContext function for use in
implementing the main operations.
This commit is just enough to get the providers passing into the
terraform.Context. There's still plenty more to do here, including to
repair all of the tests this change has additionally broken.
a large refactor to addrs.AbsProviderConfig, embedding the addrs.Provider instead of a Type string. I've added and updated tests, added some Legacy functions to support older state formats and shims, and added a normalization step when reading v4 (current) state files (not the added tests under states/statefile/roundtrip which work with both current and legacy-style AbsProviderConfig strings).
The remaining 'fixme' and 'todo' comments are mostly going to be addressed in a subsequent PR and involve looking up a given local provider config's FQN. This is fine for now as we are only working with default assumption.
This is a stepping-stone PR for the provider source project. In this PR
"legcay-stype" FQNs are created from the provider name string. Future
work involves encoding the FQN directly in the AbsProviderConfig and
removing the calls to addrs.NewLegacyProvider().
* Introduce "Local" terminology for non-absolute provider config addresses
In a future change AbsProviderConfig and LocalProviderConfig are going to
become two entirely distinct types, rather than Abs embedding Local as
written here. This naming change is in preparation for that subsequent
work, which will also include introducing a new "ProviderConfig" type
that is an interface that AbsProviderConfig and LocalProviderConfig both
implement.
This is intended to be largely just a naming change to get started, so
we can deal with all of the messy renaming. However, this did also require
a slight change in modeling where the Resource.DefaultProviderConfig
method has become Resource.DefaultProvider returning a Provider address
directly, because this method doesn't have enough information to construct
a true and accurate LocalProviderConfig -- it would need to refer to the
configuration to know what this module is calling the provider it has
selected.
In order to leave a trail to follow for subsequent work, all of the
changes here are intended to ensure that remaining work will become
obvious via compile-time errors when all of the following changes happen:
- The concept of "legacy" provider addresses is removed from the addrs
package, including removing addrs.NewLegacyProvider and
addrs.Provider.LegacyString.
- addrs.AbsProviderConfig stops having addrs.LocalProviderConfig embedded
in it and has an addrs.Provider and a string alias directly instead.
- The provider-schema-handling parts of Terraform core are updated to
work with addrs.Provider to identify providers, rather than legacy
strings.
In particular, there are still several codepaths here making legacy
provider address assumptions (in order to limit the scope of this change)
but I've made sure each one is doing something that relies on at least
one of the above changes not having been made yet.
* addrs: ProviderConfig interface
In a (very) few special situations in the main "terraform" package we need
to make runtime decisions about whether a provider config is absolute
or local.
We currently do that by exploiting the fact that AbsProviderConfig has
LocalProviderConfig nested inside of it and so in the local case we can
just ignore the wrapping AbsProviderConfig and use the embedded value.
In a future change we'll be moving away from that embedding and making
these two types distinct in order to represent that mapping between them
requires consulting a lookup table in the configuration, and so here we
introduce a new interface type ProviderConfig that can represent either
AbsProviderConfig or LocalProviderConfig decided dynamically at runtime.
This also includes the Config.ResolveAbsProviderAddr method that will
eventually be responsible for that local-to-absolute translation, so
that callers with access to the configuration can normalize to an
addrs.AbsProviderConfig given a non-nil addrs.ProviderConfig. That's
currently unused because existing callers are still relying on the
simplistic structural transform, but we'll switch them over in a later
commit.
* rename LocalType to LocalName
Co-authored-by: Kristin Laemmert <mildwonkey@users.noreply.github.com>
* huge change to weave new addrs.Provider into addrs.ProviderConfig
* terraform: do not include an empty string in the returned Providers /
Provisioners
- Fixed a minor bug where results included an extra empty string
* terraform/context: use new addrs.Provider as map key in provider factories
* added NewLegacyProviderType and LegacyString funcs to make it explicit that these are temporary placeholders
This PR introduces a new concept, provider fully-qualified name (FQN), encapsulated by the `addrs.Provider` struct.
During the Terraform 0.12 work we briefly had a partial update of the old
Terraform 0.11 (and prior) diff renderer that could work with the new
plan structure, but could produce only partial results.
We switched to the new plan implementation prior to release, but the
"terraform show" command was left calling into the old partial
implementation, and thus produced incomplete results when rendering a
saved plan.
Here we instead use the plan rendering logic from the "terraform plan"
command, making the output of both identical.
Unfortunately, due to the current backend architecture that logic lives
inside the local backend package, and it contains some business logic
around state and schema wrangling that would make it inappropriate to move
wholesale into the command/format package. To allow for a low-risk fix to
the "terraform show" output, here we avoid some more severe refactoring by
just exporting the rendering functionality in a way that allows the
"terraform show" command to call into it.
In future we'd like to move all of the code that actually writes to the
output into the "command" package so that the roles of these components
are better segregated, but that is too big a change to block fixing this
issue.
Terraform Core expects all variables to be set, but for some ancillary
commands it's fine for them to just be set to placeholders because the
variable values themselves are not key to the command's functionality
as long as the terraform.Context is still self-consistent.
For such commands, rather than prompting for interactive input for
required variables we'll just stub them out as unknowns to reflect that
they are placeholders for values that a user would normally need to
provide.
This achieves a similar effect to how these commands behaved before, but
without the tendency to produce a slightly invalid terraform.Context that
would fail in strange ways when asked to run certain operations.
During the 0.12 work we intended to move all of the variable value
collection logic into the UI layer (command package and backend packages)
and present them all together as a unified data structure to Terraform
Core. However, we didn't quite succeed because the interactive prompts
for unset required variables were still being handled _after_ calling
into Terraform Core.
Here we complete that earlier work by moving the interactive prompts for
variables out into the UI layer too, thus allowing us to handle final
validation of the variables all together in one place and do so in the UI
layer where we have the most context still available about where all of
these values are coming from.
This allows us to fix a problem where previously disabling input with
-input=false on the command line could cause Terraform Core to receive an
incomplete set of variable values, and fail with a bad error message.
As a consequence of this refactoring, the scope of terraform.Context.Input
is now reduced to only gathering provider configuration arguments. Ideally
that too would move into the UI layer somehow in a future commit, but
that's a problem for another day.
The documentation for the -target option warns that it's intended for
exceptional circumstances only and not for routine use, but that's not a
very prominent location for that warning and so some users miss it.
Here we make the warning more prominent by including it directly in the
Terraform output when -target is in use. We first warn during planning
that the plan might be incomplete, and then warn again after apply
concludes and direct the user to run "terraform plan" to make sure that
there are no further changes outstanding. The latter message is intended
to reinforce that -target should only be a one-off operation and that you
should always run without it soon after to ensure that the workspace is
left in a consistent, converged state.
This unusual situation isn't supposed to arise in normal use, but it can
come up in practice in some edge-case scenarios where Terraform fails in
a severe way during a create_before_destroy.
Some earlier versions of Terraform also had bugs in their handling of
deposed objects, so this may also arise if upgrading from one of those
older versions with some leftover deposed objects in the state.
When failing to write the state, the local backend writes the state to a local file called `errrored.tfstate`. Previously it would do so by creating a new state file which would use a new serial and lineage. By exorting the existing state file and directly assigning the new state, the serial and lineage are preserved.
This mirrors the change made for providers, so that default values can
be inserted into the config by the backend implementation. This is only
the interface and method name changes, it does not yet add any default
values.