This adds support for Elastic Beanstalk Applications, Configuration Templates,
and Environments.
This is a combined work of @catsby, @dharrisio, @Bowbaq, and @jen20
This allows specification of the profile for the shared credentials
provider for AWS to be specified in Terraform configuration. This is
useful if defining providers with aliases, or if you don't want to set
environment variables. Example:
$ aws configure --profile this_is_dog
... enter keys
$ cat main.tf
provider "aws" {
profile = "this_is_dog"
# Optionally also specify the path to the credentials file
shared_credentials_file = "/tmp/credentials"
}
This is equivalent to specifying AWS_PROFILE or
AWS_SHARED_CREDENTIALS_FILE in the environment.
also removed the notion of tags from the redshift security group and
parameter group documentation until that has been implemented
Redshift Cluster CRUD and acceptance tests
Removing the Acceptance test for the Cluster Updates. You cannot delete
a cluster immediately after performing an operation on it. We would need
to add a lot of retry logic to the system to get this test to work
Adding some schema validation for RedShift cluster
Adding the last of the pieces of a first draft of the Redshift work - this is the documentation
Changed the aws_redshift_security_group and aws_redshift_parameter_group
to remove the tags from the schema. Tags are a little bit more
complicated than originally though - I will revisit this later
Then added the schema, CRUD functionality and basic acceptance tests for
aws_redshift_subnet_group
Adding an acceptance test for the Update of subnet_ids in AWS Redshift Subnet Group
Because `aws_security_group_rule` resources are an abstraction on top of
Security Groups, they must interact with the AWS Security Group APIs in
a pattern that often results in lots of parallel requests interacting
with the same security group.
We've found that this pattern can trigger race conditions resulting in
inconsistent behavior, including:
* Rules that report as created but don't actually exist on AWS's side
* Rules that show up in AWS but don't register as being created
locally, resulting in follow up attempts to authorize the rule
failing w/ Duplicate errors
Here, we introduce a per-SG mutex that must be held by any security
group before it is allowed to interact with AWS APIs. This protects the
space between `DescribeSecurityGroup` and `Authorize*` / `Revoke*`
calls, ensuring that no other rules interact with the SG during that
span.
The included test exposes the race by applying a security group with
lots of rules, which based on the dependency graph can all be handled in
parallel. This fails most of the time without the new locking behavior.
I've omitted the mutex from `Read`, since it is only called during the
Refresh walk when no changes are being made, meaning a bunch of parallel
`DescribeSecurityGroup` API calls should be consistent in that case.