Previously we were treating "dynamic" blocks in configuration the same as
any other block type when merging config bodies, so that dynamic blocks
in the override would override any dynamic blocks present in the base,
without considering the dynamic block type.
It's more useful and intuitive for us to treat dynamic blocks as if they
are instances of their given block type for the purpose of overriding.
That means a foo block can be overridden by a dynamic "foo" block and
vice-versa, and dynamic blocks of different types do not interact at all
during overriding.
This requires us to recognize dynamic blocks and treat them specially
during decoding of a merged body. We leave them unexpanded here because
this package is not responsible for dynamic block expansion (that happens
in the sibling "lang" package) but we do decode them enough to recognize
their labels so we can treat them as if they were blocks of the labelled
type.
* command/state_list.go: fix bug loading user-defined state
If the user supplied a state path via the `-state` flag and terraform
was running in a workspace other than `default`, the state was not being
loaded properly. Fixes#19920
* funcs/coalesce: return the first non-null, non-empty element from a
sequence.
The go-cty coalesce function, which was originally used here, returns the
first non-null element from a sequence. Terraform 0.11's coalesce,
however, returns the first non-empty string from a list of strings.
This new coalesce function aims to preserve terraform's documented
functionality while adding support for additional argument types. The
tests include those in go-cty and adapted tests from the 0.11 version of
coalesce.
* website/docs: update coalesce function document
In study of existing providers we've found a pattern we werent previously
accounting for of using a nested block type to represent a group of
arguments that relate to a particular feature that is always enabled but
where it improves configuration readability to group all of its settings
together in a nested block.
The existing NestingSingle was not a good fit for this because it is
designed under the assumption that the presence or absence of the block
has some significance in enabling or disabling the relevant feature, and
so for these always-active cases we'd generate a misleading plan where
the settings for the feature appear totally absent, rather than showing
the default values that will be selected.
NestingGroup is, therefore, a slight variation of NestingSingle where
presence vs. absence of the block is not distinguishable (it's never null)
and instead its contents are treated as unset when the block is absent.
This then in turn causes any default values associated with the nested
arguments to be honored and displayed in the plan whenever the block is
not explicitly configured.
The current SDK cannot activate this mode, but that's okay because its
"legacy type system" opt-out flag allows it to force a block to be
processed in this way anyway. We're adding this now so that we can
introduce the feature in a future SDK without causing a breaking change
to the protocol, since the set of possible block nesting modes is not
extensible.
These helpers determine the value that would be used for a particular
schema construct if the configuration construct it represents is not
present (or, in the case of *Block, empty) in the configuration.
This is different than cty.NullVal on the implied type because it might
return non-null "empty" values for certain constructs if their absence
would be reported as such during a decode with no required attributes or
blocks.
This is not a recommended method, but it does serve to verify that the
set values in the ResourceData internal state are correctly computed,
which indicates that the expected configuration was passed in.
The synthetic config value used to create the Apply diff should contain
no unknown config values. Any remaining UnknownConfigValues were due to
that being used as a placeholder for values yet to be computed, and
these should be marked NewComputed in the diff.
Add a diff test using a shcema with ConfigModeAttr.
It's in the test provider, because that is what is mostly responsible
for exercising diff.Apply, and where the other tests are.
When a top-level list-of-object contains an attribute that is also
list-of-object we need to do the fixup again inside the nested body (using
our synthetic attributes-only schema) so that the attr-as-blocks mechanism
can apply within the nested blocks too.
The v0.12 language supports numeric constants only in decimal notation, as
a simplification. For rare situations where a different base is more
appropriate, such as unix-style file modes, we've found it better for
providers to accept a string containing a representation in the
appropriate base, since that way the interpretation can be validated and
it will be displayed in the same way in the rendered plan diff, in
outputs, etc.
We use tv.Value() here to mimick how HCL 1 itself would have interpreted
these, and then format them back out in the canonical form, which
implicitly converts any non-decimal constants to decimal on the way
through.
The re-introduction of some of the ambiguity between argument and nested
block syntax (for compatibility with existing provider patterns)
unfortunately leads to some interesting consequences for attributes using
this mode.
While the behavior is generally as before in straightforward cases, this
page aims to spell out some of the different usage patterns explicitly
for the benefit of those writing more complex configurations, such as
generic re-usable modules where using argument vs. block syntax leads to
some real differences.
This page is intentionally not linked from anywhere in the part of the
website maintained in the Terraform repository. Instead, it can be linked
from the provider documentation for any argument where this pattern is
used, to help users understand the ways in which that argument might
deviate from the usual behaviors of arguments vs. nested blocks.
Previously it was calling directly to hcldec.Variables, and thus missing
the special fixups we do inside ReferencesInBlock to deal with
Terraform-specific concerns such as our attribute-as-blocks preprocessing.
Stripping these was a patch for some provider behavior which was fixed
in other ways, and is no longer needed.
Removing this allows us to implement correct CusomizeDiffFuncs in
providers so that they can mark fields with empty values as computed
during a plan.
These are the largest source of the old "diffs didn't match after apply"
errors. It's almost always an upstream dependency that caused the final
error.