d604270966
This change fixes all of the known data races that `make smoke-docker-race` finds, except for one. Most of these races are around the handshake phase for a hostinfo, so we add a RWLock to the hostinfo and Lock during each of the handshake stages. Some of the other races are around consistently using `atomic` around the `messageCounter` field. To make this harder to mess up, I have renamed the field to `atomicMessageCounter` (I also removed the unnecessary extra pointer deference as we can just point directly to the struct field). The last remaining data race is around reading `ConnectionInfo.ready`, which is a boolean that is only written to once when the handshake has finished. Due to it being in the hot path for packets and the rare case that this could actually be an issue, holding off on fixing that one for now. here is the results of `make smoke-docker-race`: before: lighthouse1: Found 2 data race(s) host2: Found 36 data race(s) host3: Found 17 data race(s) host4: Found 31 data race(s) after: host2: Found 1 data race(s) host4: Found 1 data race(s) Fixes: #147 Fixes: #226 Fixes: #283 Fixes: #316 |
||
---|---|---|
.github/workflows | ||
cert | ||
cmd | ||
dist | ||
examples | ||
sshd | ||
util | ||
.gitignore | ||
AUTHORS | ||
CHANGELOG.md | ||
LICENSE | ||
Makefile | ||
README.md | ||
allow_list.go | ||
allow_list_test.go | ||
bits.go | ||
bits_test.go | ||
cert.go | ||
cidr_radix.go | ||
cidr_radix_test.go | ||
config.go | ||
config_test.go | ||
connection_manager.go | ||
connection_manager_test.go | ||
connection_state.go | ||
control.go | ||
control_test.go | ||
dns_server.go | ||
dns_server_test.go | ||
firewall.go | ||
firewall_test.go | ||
go.mod | ||
go.sum | ||
handshake.go | ||
handshake_ix.go | ||
handshake_manager.go | ||
handshake_manager_test.go | ||
header.go | ||
header_test.go | ||
hostmap.go | ||
hostmap_test.go | ||
inside.go | ||
interface.go | ||
lighthouse.go | ||
lighthouse_test.go | ||
logger.go | ||
logger_test.go | ||
main.go | ||
main_test.go | ||
message_metrics.go | ||
metadata.go | ||
nebula.pb.go | ||
nebula.proto | ||
noise.go | ||
outside.go | ||
outside_test.go | ||
punchy.go | ||
punchy_test.go | ||
ssh.go | ||
stats.go | ||
timeout.go | ||
timeout_system.go | ||
timeout_system_test.go | ||
timeout_test.go | ||
tun_android.go | ||
tun_common.go | ||
tun_darwin.go | ||
tun_disabled.go | ||
tun_freebsd.go | ||
tun_ios.go | ||
tun_linux.go | ||
tun_linux_test.go | ||
tun_test.go | ||
tun_windows.go | ||
udp_android.go | ||
udp_darwin.go | ||
udp_freebsd.go | ||
udp_generic.go | ||
udp_linux.go | ||
udp_linux_32.go | ||
udp_linux_64.go | ||
udp_windows.go |
README.md
What is Nebula?
Nebula is a scalable overlay networking tool with a focus on performance, simplicity and security. It lets you seamlessly connect computers anywhere in the world. Nebula is portable, and runs on Linux, OSX, Windows, iOS, and Android. It can be used to connect a small number of computers, but is also able to connect tens of thousands of computers.
Nebula incorporates a number of existing concepts like encryption, security groups, certificates, and tunneling, and each of those individual pieces existed before Nebula in various forms. What makes Nebula different to existing offerings is that it brings all of these ideas together, resulting in a sum that is greater than its individual parts.
You can read more about Nebula here.
You can also join the NebulaOSS Slack group here
Supported Platforms
Desktop and Server
Check the releases page for downloads
- Linux - 64 and 32 bit, arm, and others
- Windows
- MacOS
- Freebsd
Mobile
Technical Overview
Nebula is a mutually authenticated peer-to-peer software defined network based on the Noise Protocol Framework. Nebula uses certificates to assert a node's IP address, name, and membership within user-defined groups. Nebula's user-defined groups allow for provider agnostic traffic filtering between nodes. Discovery nodes allow individual peers to find each other and optionally use UDP hole punching to establish connections from behind most firewalls or NATs. Users can move data between nodes in any number of cloud service providers, datacenters, and endpoints, without needing to maintain a particular addressing scheme.
Nebula uses elliptic curve Diffie-Hellman key exchange, and AES-256-GCM in its default configuration.
Nebula was created to provide a mechanism for groups hosts to communicate securely, even across the internet, while enabling expressive firewall definitions similar in style to cloud security groups.
Getting started (quickly)
To set up a Nebula network, you'll need:
1. The Nebula binaries for your specific platform. Specifically you'll need nebula-cert
and the specific nebula binary for each platform you use.
2. (Optional, but you really should..) At least one discovery node with a routable IP address, which we call a lighthouse.
Nebula lighthouses allow nodes to find each other, anywhere in the world. A lighthouse is the only node in a Nebula network whose IP should not change. Running a lighthouse requires very few compute resources, and you can easily use the least expensive option from a cloud hosting provider. If you're not sure which provider to use, a number of us have used $5/mo DigitalOcean droplets as lighthouses.
Once you have launched an instance, ensure that Nebula udp traffic (default port udp/4242) can reach it over the internet.
3. A Nebula certificate authority, which will be the root of trust for a particular Nebula network.
./nebula-cert ca -name "Myorganization, Inc"
This will create files named ca.key
and ca.cert
in the current directory. The ca.key
file is the most sensitive file you'll create, because it is the key used to sign the certificates for individual nebula nodes/hosts. Please store this file somewhere safe, preferably with strong encryption.
4. Nebula host keys and certificates generated from that certificate authority
This assumes you have four nodes, named lighthouse1, laptop, server1, host3. You can name the nodes any way you'd like, including FQDN. You'll also need to choose IP addresses and the associated subnet. In this example, we are creating a nebula network that will use 192.168.100.x/24 as its network range. This example also demonstrates nebula groups, which can later be used to define traffic rules in a nebula network.
./nebula-cert sign -name "lighthouse1" -ip "192.168.100.1/24"
./nebula-cert sign -name "laptop" -ip "192.168.100.2/24" -groups "laptop,home,ssh"
./nebula-cert sign -name "server1" -ip "192.168.100.9/24" -groups "servers"
./nebula-cert sign -name "host3" -ip "192.168.100.10/24"
5. Configuration files for each host
Download a copy of the nebula example configuration.
-
On the lighthouse node, you'll need to ensure
am_lighthouse: true
is set. -
On the individual hosts, ensure the lighthouse is defined properly in the
static_host_map
section, and is added to the lighthousehosts
section.
6. Copy nebula credentials, configuration, and binaries to each host
For each host, copy the nebula binary to the host, along with config.yaml
from step 5, and the files ca.crt
, {host}.crt
, and {host}.key
from step 4.
DO NOT COPY ca.key
TO INDIVIDUAL NODES.
7. Run nebula on each host
./nebula -config /path/to/config.yaml
Building Nebula from source
Download go and clone this repo. Change to the nebula directory.
To build nebula for all platforms:
make all
To build nebula for a specific platform (ex, Windows):
make bin-windows
See the Makefile for more details on build targets
Credits
Nebula was created at Slack Technologies, Inc by Nate Brown and Ryan Huber, with contributions from Oliver Fross, Alan Lam, Wade Simmons, and Lining Wang.