terraform/helper/schema/schema.go

1553 lines
40 KiB
Go

// schema is a high-level framework for easily writing new providers
// for Terraform. Usage of schema is recommended over attempting to write
// to the low-level plugin interfaces manually.
//
// schema breaks down provider creation into simple CRUD operations for
// resources. The logic of diffing, destroying before creating, updating
// or creating, etc. is all handled by the framework. The plugin author
// only needs to implement a configuration schema and the CRUD operations and
// everything else is meant to just work.
//
// A good starting point is to view the Provider structure.
package schema
import (
"fmt"
"os"
"reflect"
"regexp"
"sort"
"strconv"
"strings"
"github.com/hashicorp/terraform/terraform"
"github.com/mitchellh/mapstructure"
)
// type used for schema package context keys
type contextKey string
// Schema is used to describe the structure of a value.
//
// Read the documentation of the struct elements for important details.
type Schema struct {
// Type is the type of the value and must be one of the ValueType values.
//
// This type not only determines what type is expected/valid in configuring
// this value, but also what type is returned when ResourceData.Get is
// called. The types returned by Get are:
//
// TypeBool - bool
// TypeInt - int
// TypeFloat - float64
// TypeString - string
// TypeList - []interface{}
// TypeMap - map[string]interface{}
// TypeSet - *schema.Set
//
Type ValueType
// If one of these is set, then this item can come from the configuration.
// Both cannot be set. If Optional is set, the value is optional. If
// Required is set, the value is required.
//
// One of these must be set if the value is not computed. That is:
// value either comes from the config, is computed, or is both.
Optional bool
Required bool
// If this is non-nil, the provided function will be used during diff
// of this field. If this is nil, a default diff for the type of the
// schema will be used.
//
// This allows comparison based on something other than primitive, list
// or map equality - for example SSH public keys may be considered
// equivalent regardless of trailing whitespace.
DiffSuppressFunc SchemaDiffSuppressFunc
// If this is non-nil, then this will be a default value that is used
// when this item is not set in the configuration.
//
// DefaultFunc can be specified to compute a dynamic default.
// Only one of Default or DefaultFunc can be set. If DefaultFunc is
// used then its return value should be stable to avoid generating
// confusing/perpetual diffs.
//
// Changing either Default or the return value of DefaultFunc can be
// a breaking change, especially if the attribute in question has
// ForceNew set. If a default needs to change to align with changing
// assumptions in an upstream API then it may be necessary to also use
// the MigrateState function on the resource to change the state to match,
// or have the Read function adjust the state value to align with the
// new default.
//
// If Required is true above, then Default cannot be set. DefaultFunc
// can be set with Required. If the DefaultFunc returns nil, then there
// will be no default and the user will be asked to fill it in.
//
// If either of these is set, then the user won't be asked for input
// for this key if the default is not nil.
Default interface{}
DefaultFunc SchemaDefaultFunc
// Description is used as the description for docs or asking for user
// input. It should be relatively short (a few sentences max) and should
// be formatted to fit a CLI.
Description string
// InputDefault is the default value to use for when inputs are requested.
// This differs from Default in that if Default is set, no input is
// asked for. If Input is asked, this will be the default value offered.
InputDefault string
// The fields below relate to diffs.
//
// If Computed is true, then the result of this value is computed
// (unless specified by config) on creation.
//
// If ForceNew is true, then a change in this resource necessitates
// the creation of a new resource.
//
// StateFunc is a function called to change the value of this before
// storing it in the state (and likewise before comparing for diffs).
// The use for this is for example with large strings, you may want
// to simply store the hash of it.
Computed bool
ForceNew bool
StateFunc SchemaStateFunc
// The following fields are only set for a TypeList, TypeSet, or TypeMap.
//
// Elem represents the element type. For a TypeMap, it must be a *Schema
// with a Type of TypeString, otherwise it may be either a *Schema or a
// *Resource. If it is *Schema, the element type is just a simple value.
// If it is *Resource, the element type is a complex structure,
// potentially with its own lifecycle.
Elem interface{}
// The following fields are only set for a TypeList or TypeSet.
//
// MaxItems defines a maximum amount of items that can exist within a
// TypeSet or TypeList. Specific use cases would be if a TypeSet is being
// used to wrap a complex structure, however more than one instance would
// cause instability.
//
// MinItems defines a minimum amount of items that can exist within a
// TypeSet or TypeList. Specific use cases would be if a TypeSet is being
// used to wrap a complex structure, however less than one instance would
// cause instability.
//
// PromoteSingle, if true, will allow single elements to be standalone
// and promote them to a list. For example "foo" would be promoted to
// ["foo"] automatically. This is primarily for legacy reasons and the
// ambiguity is not recommended for new usage. Promotion is only allowed
// for primitive element types.
MaxItems int
MinItems int
PromoteSingle bool
// The following fields are only valid for a TypeSet type.
//
// Set defines a function to determine the unique ID of an item so that
// a proper set can be built.
Set SchemaSetFunc
// ComputedWhen is a set of queries on the configuration. Whenever any
// of these things is changed, it will require a recompute (this requires
// that Computed is set to true).
//
// NOTE: This currently does not work.
ComputedWhen []string
// ConflictsWith is a set of schema keys that conflict with this schema.
// This will only check that they're set in the _config_. This will not
// raise an error for a malfunctioning resource that sets a conflicting
// key.
ConflictsWith []string
// When Deprecated is set, this attribute is deprecated.
//
// A deprecated field still works, but will probably stop working in near
// future. This string is the message shown to the user with instructions on
// how to address the deprecation.
Deprecated string
// When Removed is set, this attribute has been removed from the schema
//
// Removed attributes can be left in the Schema to generate informative error
// messages for the user when they show up in resource configurations.
// This string is the message shown to the user with instructions on
// what do to about the removed attribute.
Removed string
// ValidateFunc allows individual fields to define arbitrary validation
// logic. It is yielded the provided config value as an interface{} that is
// guaranteed to be of the proper Schema type, and it can yield warnings or
// errors based on inspection of that value.
//
// ValidateFunc currently only works for primitive types.
ValidateFunc SchemaValidateFunc
// Sensitive ensures that the attribute's value does not get displayed in
// logs or regular output. It should be used for passwords or other
// secret fields. Future versions of Terraform may encrypt these
// values.
Sensitive bool
}
// SchemaDiffSuppresFunc is a function which can be used to determine
// whether a detected diff on a schema element is "valid" or not, and
// suppress it from the plan if necessary.
//
// Return true if the diff should be suppressed, false to retain it.
type SchemaDiffSuppressFunc func(k, old, new string, d *ResourceData) bool
// SchemaDefaultFunc is a function called to return a default value for
// a field.
type SchemaDefaultFunc func() (interface{}, error)
// EnvDefaultFunc is a helper function that returns the value of the
// given environment variable, if one exists, or the default value
// otherwise.
func EnvDefaultFunc(k string, dv interface{}) SchemaDefaultFunc {
return func() (interface{}, error) {
if v := os.Getenv(k); v != "" {
return v, nil
}
return dv, nil
}
}
// MultiEnvDefaultFunc is a helper function that returns the value of the first
// environment variable in the given list that returns a non-empty value. If
// none of the environment variables return a value, the default value is
// returned.
func MultiEnvDefaultFunc(ks []string, dv interface{}) SchemaDefaultFunc {
return func() (interface{}, error) {
for _, k := range ks {
if v := os.Getenv(k); v != "" {
return v, nil
}
}
return dv, nil
}
}
// SchemaSetFunc is a function that must return a unique ID for the given
// element. This unique ID is used to store the element in a hash.
type SchemaSetFunc func(interface{}) int
// SchemaStateFunc is a function used to convert some type to a string
// to be stored in the state.
type SchemaStateFunc func(interface{}) string
// SchemaValidateFunc is a function used to validate a single field in the
// schema.
type SchemaValidateFunc func(interface{}, string) ([]string, []error)
func (s *Schema) GoString() string {
return fmt.Sprintf("*%#v", *s)
}
// Returns a default value for this schema by either reading Default or
// evaluating DefaultFunc. If neither of these are defined, returns nil.
func (s *Schema) DefaultValue() (interface{}, error) {
if s.Default != nil {
return s.Default, nil
}
if s.DefaultFunc != nil {
defaultValue, err := s.DefaultFunc()
if err != nil {
return nil, fmt.Errorf("error loading default: %s", err)
}
return defaultValue, nil
}
return nil, nil
}
// Returns a zero value for the schema.
func (s *Schema) ZeroValue() interface{} {
// If it's a set then we'll do a bit of extra work to provide the
// right hashing function in our empty value.
if s.Type == TypeSet {
setFunc := s.Set
if setFunc == nil {
// Default set function uses the schema to hash the whole value
elem := s.Elem
switch t := elem.(type) {
case *Schema:
setFunc = HashSchema(t)
case *Resource:
setFunc = HashResource(t)
default:
panic("invalid set element type")
}
}
return &Set{F: setFunc}
} else {
return s.Type.Zero()
}
}
func (s *Schema) finalizeDiff(
d *terraform.ResourceAttrDiff) *terraform.ResourceAttrDiff {
if d == nil {
return d
}
if s.Type == TypeBool {
normalizeBoolString := func(s string) string {
switch s {
case "0":
return "false"
case "1":
return "true"
}
return s
}
d.Old = normalizeBoolString(d.Old)
d.New = normalizeBoolString(d.New)
}
if s.Computed && !d.NewRemoved && d.New == "" {
// Computed attribute without a new value set
d.NewComputed = true
}
if s.ForceNew {
// ForceNew, mark that this field is requiring new under the
// following conditions, explained below:
//
// * Old != New - There is a change in value. This field
// is therefore causing a new resource.
//
// * NewComputed - This field is being computed, hence a
// potential change in value, mark as causing a new resource.
d.RequiresNew = d.Old != d.New || d.NewComputed
}
if d.NewRemoved {
return d
}
if s.Computed {
if d.Old != "" && d.New == "" {
// This is a computed value with an old value set already,
// just let it go.
return nil
}
if d.New == "" {
// Computed attribute without a new value set
d.NewComputed = true
}
}
if s.Sensitive {
// Set the Sensitive flag so output is hidden in the UI
d.Sensitive = true
}
return d
}
// schemaMap is a wrapper that adds nice functions on top of schemas.
type schemaMap map[string]*Schema
// Data returns a ResourceData for the given schema, state, and diff.
//
// The diff is optional.
func (m schemaMap) Data(
s *terraform.InstanceState,
d *terraform.InstanceDiff) (*ResourceData, error) {
return &ResourceData{
schema: m,
state: s,
diff: d,
}, nil
}
// Diff returns the diff for a resource given the schema map,
// state, and configuration.
func (m schemaMap) Diff(
s *terraform.InstanceState,
c *terraform.ResourceConfig) (*terraform.InstanceDiff, error) {
result := new(terraform.InstanceDiff)
result.Attributes = make(map[string]*terraform.ResourceAttrDiff)
// Make sure to mark if the resource is tainted
if s != nil {
result.DestroyTainted = s.Tainted
}
d := &ResourceData{
schema: m,
state: s,
config: c,
}
for k, schema := range m {
err := m.diff(k, schema, result, d, false)
if err != nil {
return nil, err
}
}
// If the diff requires a new resource, then we recompute the diff
// so we have the complete new resource diff, and preserve the
// RequiresNew fields where necessary so the user knows exactly what
// caused that.
if result.RequiresNew() {
// Create the new diff
result2 := new(terraform.InstanceDiff)
result2.Attributes = make(map[string]*terraform.ResourceAttrDiff)
// Preserve the DestroyTainted flag
result2.DestroyTainted = result.DestroyTainted
// Reset the data to not contain state. We have to call init()
// again in order to reset the FieldReaders.
d.state = nil
d.init()
// Perform the diff again
for k, schema := range m {
err := m.diff(k, schema, result2, d, false)
if err != nil {
return nil, err
}
}
// Force all the fields to not force a new since we know what we
// want to force new.
for k, attr := range result2.Attributes {
if attr == nil {
continue
}
if attr.RequiresNew {
attr.RequiresNew = false
}
if s != nil {
attr.Old = s.Attributes[k]
}
}
// Now copy in all the requires new diffs...
for k, attr := range result.Attributes {
if attr == nil {
continue
}
newAttr, ok := result2.Attributes[k]
if !ok {
newAttr = attr
}
if attr.RequiresNew {
newAttr.RequiresNew = true
}
result2.Attributes[k] = newAttr
}
// And set the diff!
result = result2
}
// Remove any nil diffs just to keep things clean
for k, v := range result.Attributes {
if v == nil {
delete(result.Attributes, k)
}
}
// Go through and detect all of the ComputedWhens now that we've
// finished the diff.
// TODO
if result.Empty() {
// If we don't have any diff elements, just return nil
return nil, nil
}
return result, nil
}
// Input implements the terraform.ResourceProvider method by asking
// for input for required configuration keys that don't have a value.
func (m schemaMap) Input(
input terraform.UIInput,
c *terraform.ResourceConfig) (*terraform.ResourceConfig, error) {
keys := make([]string, 0, len(m))
for k, _ := range m {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
v := m[k]
// Skip things that don't require config, if that is even valid
// for a provider schema.
// Required XOR Optional must always be true to validate, so we only
// need to check one.
if v.Optional {
continue
}
// Deprecated fields should never prompt
if v.Deprecated != "" {
continue
}
// Skip things that have a value of some sort already
if _, ok := c.Raw[k]; ok {
continue
}
// Skip if it has a default value
defaultValue, err := v.DefaultValue()
if err != nil {
return nil, fmt.Errorf("%s: error loading default: %s", k, err)
}
if defaultValue != nil {
continue
}
var value interface{}
switch v.Type {
case TypeBool, TypeInt, TypeFloat, TypeSet, TypeList:
continue
case TypeString:
value, err = m.inputString(input, k, v)
default:
panic(fmt.Sprintf("Unknown type for input: %#v", v.Type))
}
if err != nil {
return nil, fmt.Errorf(
"%s: %s", k, err)
}
c.Config[k] = value
}
return c, nil
}
// Validate validates the configuration against this schema mapping.
func (m schemaMap) Validate(c *terraform.ResourceConfig) ([]string, []error) {
return m.validateObject("", m, c)
}
// InternalValidate validates the format of this schema. This should be called
// from a unit test (and not in user-path code) to verify that a schema
// is properly built.
func (m schemaMap) InternalValidate(topSchemaMap schemaMap) error {
if topSchemaMap == nil {
topSchemaMap = m
}
for k, v := range m {
if v.Type == TypeInvalid {
return fmt.Errorf("%s: Type must be specified", k)
}
if v.Optional && v.Required {
return fmt.Errorf("%s: Optional or Required must be set, not both", k)
}
if v.Required && v.Computed {
return fmt.Errorf("%s: Cannot be both Required and Computed", k)
}
if !v.Required && !v.Optional && !v.Computed {
return fmt.Errorf("%s: One of optional, required, or computed must be set", k)
}
if v.Computed && v.Default != nil {
return fmt.Errorf("%s: Default must be nil if computed", k)
}
if v.Required && v.Default != nil {
return fmt.Errorf("%s: Default cannot be set with Required", k)
}
if len(v.ComputedWhen) > 0 && !v.Computed {
return fmt.Errorf("%s: ComputedWhen can only be set with Computed", k)
}
if len(v.ConflictsWith) > 0 && v.Required {
return fmt.Errorf("%s: ConflictsWith cannot be set with Required", k)
}
if len(v.ConflictsWith) > 0 {
for _, key := range v.ConflictsWith {
parts := strings.Split(key, ".")
sm := topSchemaMap
var target *Schema
for _, part := range parts {
// Skip index fields
if _, err := strconv.Atoi(part); err == nil {
continue
}
var ok bool
if target, ok = sm[part]; !ok {
return fmt.Errorf("%s: ConflictsWith references unknown attribute (%s)", k, key)
}
if subResource, ok := target.Elem.(*Resource); ok {
sm = schemaMap(subResource.Schema)
}
}
if target == nil {
return fmt.Errorf("%s: ConflictsWith cannot find target attribute (%s), sm: %#v", k, key, sm)
}
if target.Required {
return fmt.Errorf("%s: ConflictsWith cannot contain Required attribute (%s)", k, key)
}
if len(target.ComputedWhen) > 0 {
return fmt.Errorf("%s: ConflictsWith cannot contain Computed(When) attribute (%s)", k, key)
}
}
}
if v.Type == TypeList || v.Type == TypeSet {
if v.Elem == nil {
return fmt.Errorf("%s: Elem must be set for lists", k)
}
if v.Default != nil {
return fmt.Errorf("%s: Default is not valid for lists or sets", k)
}
if v.Type != TypeSet && v.Set != nil {
return fmt.Errorf("%s: Set can only be set for TypeSet", k)
}
switch t := v.Elem.(type) {
case *Resource:
if err := t.InternalValidate(topSchemaMap, true); err != nil {
return err
}
case *Schema:
bad := t.Computed || t.Optional || t.Required
if bad {
return fmt.Errorf(
"%s: Elem must have only Type set", k)
}
}
} else {
if v.MaxItems > 0 || v.MinItems > 0 {
return fmt.Errorf("%s: MaxItems and MinItems are only supported on lists or sets", k)
}
}
// Computed-only field
if v.Computed && !v.Optional {
if v.ValidateFunc != nil {
return fmt.Errorf("%s: ValidateFunc is for validating user input, "+
"there's nothing to validate on computed-only field", k)
}
if v.DiffSuppressFunc != nil {
return fmt.Errorf("%s: DiffSuppressFunc is for suppressing differences"+
" between config and state representation. "+
"There is no config for computed-only field, nothing to compare.", k)
}
}
if v.ValidateFunc != nil {
switch v.Type {
case TypeList, TypeSet:
return fmt.Errorf("%s: ValidateFunc is not yet supported on lists or sets.", k)
}
}
if v.Deprecated == "" && v.Removed == "" {
if !isValidFieldName(k) {
return fmt.Errorf("%s: Field name may only contain lowercase alphanumeric characters & underscores.", k)
}
}
}
return nil
}
func isValidFieldName(name string) bool {
re := regexp.MustCompile("^[a-z0-9_]+$")
return re.MatchString(name)
}
func (m schemaMap) diff(
k string,
schema *Schema,
diff *terraform.InstanceDiff,
d *ResourceData,
all bool) error {
unsupressedDiff := new(terraform.InstanceDiff)
unsupressedDiff.Attributes = make(map[string]*terraform.ResourceAttrDiff)
var err error
switch schema.Type {
case TypeBool, TypeInt, TypeFloat, TypeString:
err = m.diffString(k, schema, unsupressedDiff, d, all)
case TypeList:
err = m.diffList(k, schema, unsupressedDiff, d, all)
case TypeMap:
err = m.diffMap(k, schema, unsupressedDiff, d, all)
case TypeSet:
err = m.diffSet(k, schema, unsupressedDiff, d, all)
default:
err = fmt.Errorf("%s: unknown type %#v", k, schema.Type)
}
for attrK, attrV := range unsupressedDiff.Attributes {
if schema.DiffSuppressFunc != nil &&
attrV != nil &&
schema.DiffSuppressFunc(attrK, attrV.Old, attrV.New, d) {
continue
}
diff.Attributes[attrK] = attrV
}
return err
}
func (m schemaMap) diffList(
k string,
schema *Schema,
diff *terraform.InstanceDiff,
d *ResourceData,
all bool) error {
o, n, _, computedList := d.diffChange(k)
if computedList {
n = nil
}
nSet := n != nil
// If we have an old value and no new value is set or will be
// computed once all variables can be interpolated and we're
// computed, then nothing has changed.
if o != nil && n == nil && !computedList && schema.Computed {
return nil
}
if o == nil {
o = []interface{}{}
}
if n == nil {
n = []interface{}{}
}
if s, ok := o.(*Set); ok {
o = s.List()
}
if s, ok := n.(*Set); ok {
n = s.List()
}
os := o.([]interface{})
vs := n.([]interface{})
// If the new value was set, and the two are equal, then we're done.
// We have to do this check here because sets might be NOT
// reflect.DeepEqual so we need to wait until we get the []interface{}
if !all && nSet && reflect.DeepEqual(os, vs) {
return nil
}
// Get the counts
oldLen := len(os)
newLen := len(vs)
oldStr := strconv.FormatInt(int64(oldLen), 10)
// If the whole list is computed, then say that the # is computed
if computedList {
diff.Attributes[k+".#"] = &terraform.ResourceAttrDiff{
Old: oldStr,
NewComputed: true,
RequiresNew: schema.ForceNew,
}
return nil
}
// If the counts are not the same, then record that diff
changed := oldLen != newLen
computed := oldLen == 0 && newLen == 0 && schema.Computed
if changed || computed || all {
countSchema := &Schema{
Type: TypeInt,
Computed: schema.Computed,
ForceNew: schema.ForceNew,
}
newStr := ""
if !computed {
newStr = strconv.FormatInt(int64(newLen), 10)
} else {
oldStr = ""
}
diff.Attributes[k+".#"] = countSchema.finalizeDiff(&terraform.ResourceAttrDiff{
Old: oldStr,
New: newStr,
})
}
// Figure out the maximum
maxLen := oldLen
if newLen > maxLen {
maxLen = newLen
}
switch t := schema.Elem.(type) {
case *Resource:
// This is a complex resource
for i := 0; i < maxLen; i++ {
for k2, schema := range t.Schema {
subK := fmt.Sprintf("%s.%d.%s", k, i, k2)
err := m.diff(subK, schema, diff, d, all)
if err != nil {
return err
}
}
}
case *Schema:
// Copy the schema so that we can set Computed/ForceNew from
// the parent schema (the TypeList).
t2 := *t
t2.ForceNew = schema.ForceNew
// This is just a primitive element, so go through each and
// just diff each.
for i := 0; i < maxLen; i++ {
subK := fmt.Sprintf("%s.%d", k, i)
err := m.diff(subK, &t2, diff, d, all)
if err != nil {
return err
}
}
default:
return fmt.Errorf("%s: unknown element type (internal)", k)
}
return nil
}
func (m schemaMap) diffMap(
k string,
schema *Schema,
diff *terraform.InstanceDiff,
d *ResourceData,
all bool) error {
prefix := k + "."
// First get all the values from the state
var stateMap, configMap map[string]string
o, n, _, nComputed := d.diffChange(k)
if err := mapstructure.WeakDecode(o, &stateMap); err != nil {
return fmt.Errorf("%s: %s", k, err)
}
if err := mapstructure.WeakDecode(n, &configMap); err != nil {
return fmt.Errorf("%s: %s", k, err)
}
// Keep track of whether the state _exists_ at all prior to clearing it
stateExists := o != nil
// Delete any count values, since we don't use those
delete(configMap, "%")
delete(stateMap, "%")
// Check if the number of elements has changed.
oldLen, newLen := len(stateMap), len(configMap)
changed := oldLen != newLen
if oldLen != 0 && newLen == 0 && schema.Computed {
changed = false
}
// It is computed if we have no old value, no new value, the schema
// says it is computed, and it didn't exist in the state before. The
// last point means: if it existed in the state, even empty, then it
// has already been computed.
computed := oldLen == 0 && newLen == 0 && schema.Computed && !stateExists
// If the count has changed or we're computed, then add a diff for the
// count. "nComputed" means that the new value _contains_ a value that
// is computed. We don't do granular diffs for this yet, so we mark the
// whole map as computed.
if changed || computed || nComputed {
countSchema := &Schema{
Type: TypeInt,
Computed: schema.Computed || nComputed,
ForceNew: schema.ForceNew,
}
oldStr := strconv.FormatInt(int64(oldLen), 10)
newStr := ""
if !computed && !nComputed {
newStr = strconv.FormatInt(int64(newLen), 10)
} else {
oldStr = ""
}
diff.Attributes[k+".%"] = countSchema.finalizeDiff(
&terraform.ResourceAttrDiff{
Old: oldStr,
New: newStr,
},
)
}
// If the new map is nil and we're computed, then ignore it.
if n == nil && schema.Computed {
return nil
}
// Now we compare, preferring values from the config map
for k, v := range configMap {
old, ok := stateMap[k]
delete(stateMap, k)
if old == v && ok && !all {
continue
}
diff.Attributes[prefix+k] = schema.finalizeDiff(&terraform.ResourceAttrDiff{
Old: old,
New: v,
})
}
for k, v := range stateMap {
diff.Attributes[prefix+k] = schema.finalizeDiff(&terraform.ResourceAttrDiff{
Old: v,
NewRemoved: true,
})
}
return nil
}
func (m schemaMap) diffSet(
k string,
schema *Schema,
diff *terraform.InstanceDiff,
d *ResourceData,
all bool) error {
o, n, _, computedSet := d.diffChange(k)
if computedSet {
n = nil
}
nSet := n != nil
// If we have an old value and no new value is set or will be
// computed once all variables can be interpolated and we're
// computed, then nothing has changed.
if o != nil && n == nil && !computedSet && schema.Computed {
return nil
}
if o == nil {
o = schema.ZeroValue().(*Set)
}
if n == nil {
n = schema.ZeroValue().(*Set)
}
os := o.(*Set)
ns := n.(*Set)
// If the new value was set, compare the listCode's to determine if
// the two are equal. Comparing listCode's instead of the actual values
// is needed because there could be computed values in the set which
// would result in false positives while comparing.
if !all && nSet && reflect.DeepEqual(os.listCode(), ns.listCode()) {
return nil
}
// Get the counts
oldLen := os.Len()
newLen := ns.Len()
oldStr := strconv.Itoa(oldLen)
newStr := strconv.Itoa(newLen)
// Build a schema for our count
countSchema := &Schema{
Type: TypeInt,
Computed: schema.Computed,
ForceNew: schema.ForceNew,
}
// If the set computed then say that the # is computed
if computedSet || schema.Computed && !nSet {
// If # already exists, equals 0 and no new set is supplied, there
// is nothing to record in the diff
count, ok := d.GetOk(k + ".#")
if ok && count.(int) == 0 && !nSet && !computedSet {
return nil
}
// Set the count but make sure that if # does not exist, we don't
// use the zeroed value
countStr := strconv.Itoa(count.(int))
if !ok {
countStr = ""
}
diff.Attributes[k+".#"] = countSchema.finalizeDiff(&terraform.ResourceAttrDiff{
Old: countStr,
NewComputed: true,
})
return nil
}
// If the counts are not the same, then record that diff
changed := oldLen != newLen
if changed || all {
diff.Attributes[k+".#"] = countSchema.finalizeDiff(&terraform.ResourceAttrDiff{
Old: oldStr,
New: newStr,
})
}
// Build the list of codes that will make up our set. This is the
// removed codes as well as all the codes in the new codes.
codes := make([][]string, 2)
codes[0] = os.Difference(ns).listCode()
codes[1] = ns.listCode()
for _, list := range codes {
for _, code := range list {
switch t := schema.Elem.(type) {
case *Resource:
// This is a complex resource
for k2, schema := range t.Schema {
subK := fmt.Sprintf("%s.%s.%s", k, code, k2)
err := m.diff(subK, schema, diff, d, true)
if err != nil {
return err
}
}
case *Schema:
// Copy the schema so that we can set Computed/ForceNew from
// the parent schema (the TypeSet).
t2 := *t
t2.ForceNew = schema.ForceNew
// This is just a primitive element, so go through each and
// just diff each.
subK := fmt.Sprintf("%s.%s", k, code)
err := m.diff(subK, &t2, diff, d, true)
if err != nil {
return err
}
default:
return fmt.Errorf("%s: unknown element type (internal)", k)
}
}
}
return nil
}
func (m schemaMap) diffString(
k string,
schema *Schema,
diff *terraform.InstanceDiff,
d *ResourceData,
all bool) error {
var originalN interface{}
var os, ns string
o, n, _, computed := d.diffChange(k)
if schema.StateFunc != nil && n != nil {
originalN = n
n = schema.StateFunc(n)
}
nraw := n
if nraw == nil && o != nil {
nraw = schema.Type.Zero()
}
if err := mapstructure.WeakDecode(o, &os); err != nil {
return fmt.Errorf("%s: %s", k, err)
}
if err := mapstructure.WeakDecode(nraw, &ns); err != nil {
return fmt.Errorf("%s: %s", k, err)
}
if os == ns && !all {
// They're the same value. If there old value is not blank or we
// have an ID, then return right away since we're already setup.
if os != "" || d.Id() != "" {
return nil
}
// Otherwise, only continue if we're computed
if !schema.Computed && !computed {
return nil
}
}
removed := false
if o != nil && n == nil {
removed = true
}
if removed && schema.Computed {
return nil
}
diff.Attributes[k] = schema.finalizeDiff(&terraform.ResourceAttrDiff{
Old: os,
New: ns,
NewExtra: originalN,
NewRemoved: removed,
NewComputed: computed,
})
return nil
}
func (m schemaMap) inputString(
input terraform.UIInput,
k string,
schema *Schema) (interface{}, error) {
result, err := input.Input(&terraform.InputOpts{
Id: k,
Query: k,
Description: schema.Description,
Default: schema.InputDefault,
})
return result, err
}
func (m schemaMap) validate(
k string,
schema *Schema,
c *terraform.ResourceConfig) ([]string, []error) {
raw, ok := c.Get(k)
if !ok && schema.DefaultFunc != nil {
// We have a dynamic default. Check if we have a value.
var err error
raw, err = schema.DefaultFunc()
if err != nil {
return nil, []error{fmt.Errorf(
"%q, error loading default: %s", k, err)}
}
// We're okay as long as we had a value set
ok = raw != nil
}
if !ok {
if schema.Required {
return nil, []error{fmt.Errorf(
"%q: required field is not set", k)}
}
return nil, nil
}
if !schema.Required && !schema.Optional {
// This is a computed-only field
return nil, []error{fmt.Errorf(
"%q: this field cannot be set", k)}
}
err := m.validateConflictingAttributes(k, schema, c)
if err != nil {
return nil, []error{err}
}
return m.validateType(k, raw, schema, c)
}
func (m schemaMap) validateConflictingAttributes(
k string,
schema *Schema,
c *terraform.ResourceConfig) error {
if len(schema.ConflictsWith) == 0 {
return nil
}
for _, conflicting_key := range schema.ConflictsWith {
if value, ok := c.Get(conflicting_key); ok {
return fmt.Errorf(
"%q: conflicts with %s (%#v)", k, conflicting_key, value)
}
}
return nil
}
func (m schemaMap) validateList(
k string,
raw interface{},
schema *Schema,
c *terraform.ResourceConfig) ([]string, []error) {
// We use reflection to verify the slice because you can't
// case to []interface{} unless the slice is exactly that type.
rawV := reflect.ValueOf(raw)
// If we support promotion and the raw value isn't a slice, wrap
// it in []interface{} and check again.
if schema.PromoteSingle && rawV.Kind() != reflect.Slice {
raw = []interface{}{raw}
rawV = reflect.ValueOf(raw)
}
if rawV.Kind() != reflect.Slice {
return nil, []error{fmt.Errorf(
"%s: should be a list", k)}
}
// Validate length
if schema.MaxItems > 0 && rawV.Len() > schema.MaxItems {
return nil, []error{fmt.Errorf(
"%s: attribute supports %d item maximum, config has %d declared", k, schema.MaxItems, rawV.Len())}
}
if schema.MinItems > 0 && rawV.Len() < schema.MinItems {
return nil, []error{fmt.Errorf(
"%s: attribute supports %d item as a minimum, config has %d declared", k, schema.MinItems, rawV.Len())}
}
// Now build the []interface{}
raws := make([]interface{}, rawV.Len())
for i, _ := range raws {
raws[i] = rawV.Index(i).Interface()
}
var ws []string
var es []error
for i, raw := range raws {
key := fmt.Sprintf("%s.%d", k, i)
// Reify the key value from the ResourceConfig.
// If the list was computed we have all raw values, but some of these
// may be known in the config, and aren't individually marked as Computed.
if r, ok := c.Get(key); ok {
raw = r
}
var ws2 []string
var es2 []error
switch t := schema.Elem.(type) {
case *Resource:
// This is a sub-resource
ws2, es2 = m.validateObject(key, t.Schema, c)
case *Schema:
ws2, es2 = m.validateType(key, raw, t, c)
}
if len(ws2) > 0 {
ws = append(ws, ws2...)
}
if len(es2) > 0 {
es = append(es, es2...)
}
}
return ws, es
}
func (m schemaMap) validateMap(
k string,
raw interface{},
schema *Schema,
c *terraform.ResourceConfig) ([]string, []error) {
// We use reflection to verify the slice because you can't
// case to []interface{} unless the slice is exactly that type.
rawV := reflect.ValueOf(raw)
switch rawV.Kind() {
case reflect.String:
// If raw and reified are equal, this is a string and should
// be rejected.
reified, reifiedOk := c.Get(k)
if reifiedOk && raw == reified && !c.IsComputed(k) {
return nil, []error{fmt.Errorf("%s: should be a map", k)}
}
// Otherwise it's likely raw is an interpolation.
return nil, nil
case reflect.Map:
case reflect.Slice:
default:
return nil, []error{fmt.Errorf("%s: should be a map", k)}
}
// If it is not a slice, validate directly
if rawV.Kind() != reflect.Slice {
mapIface := rawV.Interface()
if _, errs := validateMapValues(k, mapIface.(map[string]interface{}), schema); len(errs) > 0 {
return nil, errs
}
if schema.ValidateFunc != nil {
return schema.ValidateFunc(mapIface, k)
}
return nil, nil
}
// It is a slice, verify that all the elements are maps
raws := make([]interface{}, rawV.Len())
for i, _ := range raws {
raws[i] = rawV.Index(i).Interface()
}
for _, raw := range raws {
v := reflect.ValueOf(raw)
if v.Kind() != reflect.Map {
return nil, []error{fmt.Errorf(
"%s: should be a map", k)}
}
mapIface := v.Interface()
if _, errs := validateMapValues(k, mapIface.(map[string]interface{}), schema); len(errs) > 0 {
return nil, errs
}
}
if schema.ValidateFunc != nil {
validatableMap := make(map[string]interface{})
for _, raw := range raws {
for k, v := range raw.(map[string]interface{}) {
validatableMap[k] = v
}
}
return schema.ValidateFunc(validatableMap, k)
}
return nil, nil
}
func validateMapValues(k string, m map[string]interface{}, schema *Schema) ([]string, []error) {
for key, raw := range m {
valueType, err := getValueType(k, schema)
if err != nil {
return nil, []error{err}
}
switch valueType {
case TypeBool:
var n bool
if err := mapstructure.WeakDecode(raw, &n); err != nil {
return nil, []error{fmt.Errorf("%s (%s): %s", k, key, err)}
}
case TypeInt:
var n int
if err := mapstructure.WeakDecode(raw, &n); err != nil {
return nil, []error{fmt.Errorf("%s (%s): %s", k, key, err)}
}
case TypeFloat:
var n float64
if err := mapstructure.WeakDecode(raw, &n); err != nil {
return nil, []error{fmt.Errorf("%s (%s): %s", k, key, err)}
}
case TypeString:
var n string
if err := mapstructure.WeakDecode(raw, &n); err != nil {
return nil, []error{fmt.Errorf("%s (%s): %s", k, key, err)}
}
default:
panic(fmt.Sprintf("Unknown validation type: %#v", schema.Type))
}
}
return nil, nil
}
func getValueType(k string, schema *Schema) (ValueType, error) {
if schema.Elem == nil {
return TypeString, nil
}
if vt, ok := schema.Elem.(ValueType); ok {
return vt, nil
}
if s, ok := schema.Elem.(*Schema); ok {
if s.Elem == nil {
return TypeString, nil
}
if vt, ok := s.Elem.(ValueType); ok {
return vt, nil
}
}
if _, ok := schema.Elem.(*Resource); ok {
// TODO: We don't actually support this (yet)
// but silently pass the validation, until we decide
// how to handle nested structures in maps
return TypeString, nil
}
return 0, fmt.Errorf("%s: unexpected map value type: %#v", k, schema.Elem)
}
func (m schemaMap) validateObject(
k string,
schema map[string]*Schema,
c *terraform.ResourceConfig) ([]string, []error) {
raw, _ := c.Get(k)
if _, ok := raw.(map[string]interface{}); !ok && !c.IsComputed(k) {
return nil, []error{fmt.Errorf(
"%s: expected object, got %s",
k, reflect.ValueOf(raw).Kind())}
}
var ws []string
var es []error
for subK, s := range schema {
key := subK
if k != "" {
key = fmt.Sprintf("%s.%s", k, subK)
}
ws2, es2 := m.validate(key, s, c)
if len(ws2) > 0 {
ws = append(ws, ws2...)
}
if len(es2) > 0 {
es = append(es, es2...)
}
}
// Detect any extra/unknown keys and report those as errors.
if m, ok := raw.(map[string]interface{}); ok {
for subk, _ := range m {
if _, ok := schema[subk]; !ok {
if subk == TimeoutsConfigKey {
continue
}
es = append(es, fmt.Errorf(
"%s: invalid or unknown key: %s", k, subk))
}
}
}
return ws, es
}
func (m schemaMap) validatePrimitive(
k string,
raw interface{},
schema *Schema,
c *terraform.ResourceConfig) ([]string, []error) {
// Catch if the user gave a complex type where a primitive was
// expected, so we can return a friendly error message that
// doesn't contain Go type system terminology.
switch reflect.ValueOf(raw).Type().Kind() {
case reflect.Slice:
return nil, []error{
fmt.Errorf("%s must be a single value, not a list", k),
}
case reflect.Map:
return nil, []error{
fmt.Errorf("%s must be a single value, not a map", k),
}
default: // ok
}
if c.IsComputed(k) {
// If the key is being computed, then it is not an error as
// long as it's not a slice or map.
return nil, nil
}
var decoded interface{}
switch schema.Type {
case TypeBool:
// Verify that we can parse this as the correct type
var n bool
if err := mapstructure.WeakDecode(raw, &n); err != nil {
return nil, []error{fmt.Errorf("%s: %s", k, err)}
}
decoded = n
case TypeInt:
// Verify that we can parse this as an int
var n int
if err := mapstructure.WeakDecode(raw, &n); err != nil {
return nil, []error{fmt.Errorf("%s: %s", k, err)}
}
decoded = n
case TypeFloat:
// Verify that we can parse this as an int
var n float64
if err := mapstructure.WeakDecode(raw, &n); err != nil {
return nil, []error{fmt.Errorf("%s: %s", k, err)}
}
decoded = n
case TypeString:
// Verify that we can parse this as a string
var n string
if err := mapstructure.WeakDecode(raw, &n); err != nil {
return nil, []error{fmt.Errorf("%s: %s", k, err)}
}
decoded = n
default:
panic(fmt.Sprintf("Unknown validation type: %#v", schema.Type))
}
if schema.ValidateFunc != nil {
return schema.ValidateFunc(decoded, k)
}
return nil, nil
}
func (m schemaMap) validateType(
k string,
raw interface{},
schema *Schema,
c *terraform.ResourceConfig) ([]string, []error) {
var ws []string
var es []error
switch schema.Type {
case TypeSet, TypeList:
ws, es = m.validateList(k, raw, schema, c)
case TypeMap:
ws, es = m.validateMap(k, raw, schema, c)
default:
ws, es = m.validatePrimitive(k, raw, schema, c)
}
if schema.Deprecated != "" {
ws = append(ws, fmt.Sprintf(
"%q: [DEPRECATED] %s", k, schema.Deprecated))
}
if schema.Removed != "" {
es = append(es, fmt.Errorf(
"%q: [REMOVED] %s", k, schema.Removed))
}
return ws, es
}
// Zero returns the zero value for a type.
func (t ValueType) Zero() interface{} {
switch t {
case TypeInvalid:
return nil
case TypeBool:
return false
case TypeInt:
return 0
case TypeFloat:
return 0.0
case TypeString:
return ""
case TypeList:
return []interface{}{}
case TypeMap:
return map[string]interface{}{}
case TypeSet:
return new(Set)
case typeObject:
return map[string]interface{}{}
default:
panic(fmt.Sprintf("unknown type %s", t))
}
}