236 lines
6.0 KiB
Go
236 lines
6.0 KiB
Go
// Copyright 2017, OpenCensus Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
|
|
package view
|
|
|
|
import (
|
|
"math"
|
|
|
|
"go.opencensus.io/exemplar"
|
|
)
|
|
|
|
// AggregationData represents an aggregated value from a collection.
|
|
// They are reported on the view data during exporting.
|
|
// Mosts users won't directly access aggregration data.
|
|
type AggregationData interface {
|
|
isAggregationData() bool
|
|
addSample(e *exemplar.Exemplar)
|
|
clone() AggregationData
|
|
equal(other AggregationData) bool
|
|
}
|
|
|
|
const epsilon = 1e-9
|
|
|
|
// CountData is the aggregated data for the Count aggregation.
|
|
// A count aggregation processes data and counts the recordings.
|
|
//
|
|
// Most users won't directly access count data.
|
|
type CountData struct {
|
|
Value int64
|
|
}
|
|
|
|
func (a *CountData) isAggregationData() bool { return true }
|
|
|
|
func (a *CountData) addSample(_ *exemplar.Exemplar) {
|
|
a.Value = a.Value + 1
|
|
}
|
|
|
|
func (a *CountData) clone() AggregationData {
|
|
return &CountData{Value: a.Value}
|
|
}
|
|
|
|
func (a *CountData) equal(other AggregationData) bool {
|
|
a2, ok := other.(*CountData)
|
|
if !ok {
|
|
return false
|
|
}
|
|
|
|
return a.Value == a2.Value
|
|
}
|
|
|
|
// SumData is the aggregated data for the Sum aggregation.
|
|
// A sum aggregation processes data and sums up the recordings.
|
|
//
|
|
// Most users won't directly access sum data.
|
|
type SumData struct {
|
|
Value float64
|
|
}
|
|
|
|
func (a *SumData) isAggregationData() bool { return true }
|
|
|
|
func (a *SumData) addSample(e *exemplar.Exemplar) {
|
|
a.Value += e.Value
|
|
}
|
|
|
|
func (a *SumData) clone() AggregationData {
|
|
return &SumData{Value: a.Value}
|
|
}
|
|
|
|
func (a *SumData) equal(other AggregationData) bool {
|
|
a2, ok := other.(*SumData)
|
|
if !ok {
|
|
return false
|
|
}
|
|
return math.Pow(a.Value-a2.Value, 2) < epsilon
|
|
}
|
|
|
|
// DistributionData is the aggregated data for the
|
|
// Distribution aggregation.
|
|
//
|
|
// Most users won't directly access distribution data.
|
|
//
|
|
// For a distribution with N bounds, the associated DistributionData will have
|
|
// N+1 buckets.
|
|
type DistributionData struct {
|
|
Count int64 // number of data points aggregated
|
|
Min float64 // minimum value in the distribution
|
|
Max float64 // max value in the distribution
|
|
Mean float64 // mean of the distribution
|
|
SumOfSquaredDev float64 // sum of the squared deviation from the mean
|
|
CountPerBucket []int64 // number of occurrences per bucket
|
|
// ExemplarsPerBucket is slice the same length as CountPerBucket containing
|
|
// an exemplar for the associated bucket, or nil.
|
|
ExemplarsPerBucket []*exemplar.Exemplar
|
|
bounds []float64 // histogram distribution of the values
|
|
}
|
|
|
|
func newDistributionData(bounds []float64) *DistributionData {
|
|
bucketCount := len(bounds) + 1
|
|
return &DistributionData{
|
|
CountPerBucket: make([]int64, bucketCount),
|
|
ExemplarsPerBucket: make([]*exemplar.Exemplar, bucketCount),
|
|
bounds: bounds,
|
|
Min: math.MaxFloat64,
|
|
Max: math.SmallestNonzeroFloat64,
|
|
}
|
|
}
|
|
|
|
// Sum returns the sum of all samples collected.
|
|
func (a *DistributionData) Sum() float64 { return a.Mean * float64(a.Count) }
|
|
|
|
func (a *DistributionData) variance() float64 {
|
|
if a.Count <= 1 {
|
|
return 0
|
|
}
|
|
return a.SumOfSquaredDev / float64(a.Count-1)
|
|
}
|
|
|
|
func (a *DistributionData) isAggregationData() bool { return true }
|
|
|
|
func (a *DistributionData) addSample(e *exemplar.Exemplar) {
|
|
f := e.Value
|
|
if f < a.Min {
|
|
a.Min = f
|
|
}
|
|
if f > a.Max {
|
|
a.Max = f
|
|
}
|
|
a.Count++
|
|
a.addToBucket(e)
|
|
|
|
if a.Count == 1 {
|
|
a.Mean = f
|
|
return
|
|
}
|
|
|
|
oldMean := a.Mean
|
|
a.Mean = a.Mean + (f-a.Mean)/float64(a.Count)
|
|
a.SumOfSquaredDev = a.SumOfSquaredDev + (f-oldMean)*(f-a.Mean)
|
|
}
|
|
|
|
func (a *DistributionData) addToBucket(e *exemplar.Exemplar) {
|
|
var count *int64
|
|
var ex **exemplar.Exemplar
|
|
for i, b := range a.bounds {
|
|
if e.Value < b {
|
|
count = &a.CountPerBucket[i]
|
|
ex = &a.ExemplarsPerBucket[i]
|
|
break
|
|
}
|
|
}
|
|
if count == nil {
|
|
count = &a.CountPerBucket[len(a.bounds)]
|
|
ex = &a.ExemplarsPerBucket[len(a.bounds)]
|
|
}
|
|
*count++
|
|
*ex = maybeRetainExemplar(*ex, e)
|
|
}
|
|
|
|
func maybeRetainExemplar(old, cur *exemplar.Exemplar) *exemplar.Exemplar {
|
|
if old == nil {
|
|
return cur
|
|
}
|
|
|
|
// Heuristic to pick the "better" exemplar: first keep the one with a
|
|
// sampled trace attachment, if neither have a trace attachment, pick the
|
|
// one with more attachments.
|
|
_, haveTraceID := cur.Attachments[exemplar.KeyTraceID]
|
|
if haveTraceID || len(cur.Attachments) >= len(old.Attachments) {
|
|
return cur
|
|
}
|
|
return old
|
|
}
|
|
|
|
func (a *DistributionData) clone() AggregationData {
|
|
c := *a
|
|
c.CountPerBucket = append([]int64(nil), a.CountPerBucket...)
|
|
c.ExemplarsPerBucket = append([]*exemplar.Exemplar(nil), a.ExemplarsPerBucket...)
|
|
return &c
|
|
}
|
|
|
|
func (a *DistributionData) equal(other AggregationData) bool {
|
|
a2, ok := other.(*DistributionData)
|
|
if !ok {
|
|
return false
|
|
}
|
|
if a2 == nil {
|
|
return false
|
|
}
|
|
if len(a.CountPerBucket) != len(a2.CountPerBucket) {
|
|
return false
|
|
}
|
|
for i := range a.CountPerBucket {
|
|
if a.CountPerBucket[i] != a2.CountPerBucket[i] {
|
|
return false
|
|
}
|
|
}
|
|
return a.Count == a2.Count && a.Min == a2.Min && a.Max == a2.Max && math.Pow(a.Mean-a2.Mean, 2) < epsilon && math.Pow(a.variance()-a2.variance(), 2) < epsilon
|
|
}
|
|
|
|
// LastValueData returns the last value recorded for LastValue aggregation.
|
|
type LastValueData struct {
|
|
Value float64
|
|
}
|
|
|
|
func (l *LastValueData) isAggregationData() bool {
|
|
return true
|
|
}
|
|
|
|
func (l *LastValueData) addSample(e *exemplar.Exemplar) {
|
|
l.Value = e.Value
|
|
}
|
|
|
|
func (l *LastValueData) clone() AggregationData {
|
|
return &LastValueData{l.Value}
|
|
}
|
|
|
|
func (l *LastValueData) equal(other AggregationData) bool {
|
|
a2, ok := other.(*LastValueData)
|
|
if !ok {
|
|
return false
|
|
}
|
|
return l.Value == a2.Value
|
|
}
|