420 lines
14 KiB
Go
420 lines
14 KiB
Go
package json
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"fmt"
|
|
"sort"
|
|
"strings"
|
|
|
|
"github.com/hashicorp/hcl/v2"
|
|
"github.com/hashicorp/hcl/v2/hcled"
|
|
"github.com/hashicorp/hcl/v2/hclparse"
|
|
"github.com/hashicorp/terraform/internal/tfdiags"
|
|
"github.com/zclconf/go-cty/cty"
|
|
)
|
|
|
|
// These severities map to the tfdiags.Severity values, plus an explicit
|
|
// unknown in case that enum grows without us noticing here.
|
|
const (
|
|
DiagnosticSeverityUnknown = "unknown"
|
|
DiagnosticSeverityError = "error"
|
|
DiagnosticSeverityWarning = "warning"
|
|
)
|
|
|
|
// Diagnostic represents any tfdiags.Diagnostic value. The simplest form has
|
|
// just a severity, single line summary, and optional detail. If there is more
|
|
// information about the source of the diagnostic, this is represented in the
|
|
// range field.
|
|
type Diagnostic struct {
|
|
Severity string `json:"severity"`
|
|
Summary string `json:"summary"`
|
|
Detail string `json:"detail"`
|
|
Address string `json:"address,omitempty"`
|
|
Range *DiagnosticRange `json:"range,omitempty"`
|
|
Snippet *DiagnosticSnippet `json:"snippet,omitempty"`
|
|
}
|
|
|
|
// Pos represents a position in the source code.
|
|
type Pos struct {
|
|
// Line is a one-based count for the line in the indicated file.
|
|
Line int `json:"line"`
|
|
|
|
// Column is a one-based count of Unicode characters from the start of the line.
|
|
Column int `json:"column"`
|
|
|
|
// Byte is a zero-based offset into the indicated file.
|
|
Byte int `json:"byte"`
|
|
}
|
|
|
|
// DiagnosticRange represents the filename and position of the diagnostic
|
|
// subject. This defines the range of the source to be highlighted in the
|
|
// output. Note that the snippet may include additional surrounding source code
|
|
// if the diagnostic has a context range.
|
|
//
|
|
// The Start position is inclusive, and the End position is exclusive. Exact
|
|
// positions are intended for highlighting for human interpretation only and
|
|
// are subject to change.
|
|
type DiagnosticRange struct {
|
|
Filename string `json:"filename"`
|
|
Start Pos `json:"start"`
|
|
End Pos `json:"end"`
|
|
}
|
|
|
|
// DiagnosticSnippet represents source code information about the diagnostic.
|
|
// It is possible for a diagnostic to have a source (and therefore a range) but
|
|
// no source code can be found. In this case, the range field will be present and
|
|
// the snippet field will not.
|
|
type DiagnosticSnippet struct {
|
|
// Context is derived from HCL's hcled.ContextString output. This gives a
|
|
// high-level summary of the root context of the diagnostic: for example,
|
|
// the resource block in which an expression causes an error.
|
|
Context *string `json:"context"`
|
|
|
|
// Code is a possibly-multi-line string of Terraform configuration, which
|
|
// includes both the diagnostic source and any relevant context as defined
|
|
// by the diagnostic.
|
|
Code string `json:"code"`
|
|
|
|
// StartLine is the line number in the source file for the first line of
|
|
// the snippet code block. This is not necessarily the same as the value of
|
|
// Range.Start.Line, as it is possible to have zero or more lines of
|
|
// context source code before the diagnostic range starts.
|
|
StartLine int `json:"start_line"`
|
|
|
|
// HighlightStartOffset is the character offset into Code at which the
|
|
// diagnostic source range starts, which ought to be highlighted as such by
|
|
// the consumer of this data.
|
|
HighlightStartOffset int `json:"highlight_start_offset"`
|
|
|
|
// HighlightEndOffset is the character offset into Code at which the
|
|
// diagnostic source range ends.
|
|
HighlightEndOffset int `json:"highlight_end_offset"`
|
|
|
|
// Values is a sorted slice of expression values which may be useful in
|
|
// understanding the source of an error in a complex expression.
|
|
Values []DiagnosticExpressionValue `json:"values"`
|
|
}
|
|
|
|
// DiagnosticExpressionValue represents an HCL traversal string (e.g.
|
|
// "var.foo") and a statement about its value while the expression was
|
|
// evaluated (e.g. "is a string", "will be known only after apply"). These are
|
|
// intended to help the consumer diagnose why an expression caused a diagnostic
|
|
// to be emitted.
|
|
type DiagnosticExpressionValue struct {
|
|
Traversal string `json:"traversal"`
|
|
Statement string `json:"statement"`
|
|
}
|
|
|
|
// NewDiagnostic takes a tfdiags.Diagnostic and a map of configuration sources,
|
|
// and returns a Diagnostic struct.
|
|
func NewDiagnostic(diag tfdiags.Diagnostic, sources map[string][]byte) *Diagnostic {
|
|
var sev string
|
|
switch diag.Severity() {
|
|
case tfdiags.Error:
|
|
sev = DiagnosticSeverityError
|
|
case tfdiags.Warning:
|
|
sev = DiagnosticSeverityWarning
|
|
default:
|
|
sev = DiagnosticSeverityUnknown
|
|
}
|
|
|
|
desc := diag.Description()
|
|
|
|
diagnostic := &Diagnostic{
|
|
Severity: sev,
|
|
Summary: desc.Summary,
|
|
Detail: desc.Detail,
|
|
Address: desc.Address,
|
|
}
|
|
|
|
sourceRefs := diag.Source()
|
|
if sourceRefs.Subject != nil {
|
|
// We'll borrow HCL's range implementation here, because it has some
|
|
// handy features to help us produce a nice source code snippet.
|
|
highlightRange := sourceRefs.Subject.ToHCL()
|
|
|
|
// Some diagnostic sources fail to set the end of the subject range.
|
|
if highlightRange.End == (hcl.Pos{}) {
|
|
highlightRange.End = highlightRange.Start
|
|
}
|
|
|
|
snippetRange := highlightRange
|
|
if sourceRefs.Context != nil {
|
|
snippetRange = sourceRefs.Context.ToHCL()
|
|
}
|
|
|
|
// Make sure the snippet includes the highlight. This should be true
|
|
// for any reasonable diagnostic, but we'll make sure.
|
|
snippetRange = hcl.RangeOver(snippetRange, highlightRange)
|
|
|
|
// Empty ranges result in odd diagnostic output, so extend the end to
|
|
// ensure there's at least one byte in the snippet or highlight.
|
|
if snippetRange.Empty() {
|
|
snippetRange.End.Byte++
|
|
snippetRange.End.Column++
|
|
}
|
|
if highlightRange.Empty() {
|
|
highlightRange.End.Byte++
|
|
highlightRange.End.Column++
|
|
}
|
|
|
|
diagnostic.Range = &DiagnosticRange{
|
|
Filename: highlightRange.Filename,
|
|
Start: Pos{
|
|
Line: highlightRange.Start.Line,
|
|
Column: highlightRange.Start.Column,
|
|
Byte: highlightRange.Start.Byte,
|
|
},
|
|
End: Pos{
|
|
Line: highlightRange.End.Line,
|
|
Column: highlightRange.End.Column,
|
|
Byte: highlightRange.End.Byte,
|
|
},
|
|
}
|
|
|
|
var src []byte
|
|
if sources != nil {
|
|
src = sources[highlightRange.Filename]
|
|
}
|
|
|
|
// If we have a source file for the diagnostic, we can emit a code
|
|
// snippet.
|
|
if src != nil {
|
|
diagnostic.Snippet = &DiagnosticSnippet{
|
|
StartLine: snippetRange.Start.Line,
|
|
|
|
// Ensure that the default Values struct is an empty array, as this
|
|
// makes consuming the JSON structure easier in most languages.
|
|
Values: []DiagnosticExpressionValue{},
|
|
}
|
|
|
|
file, offset := parseRange(src, highlightRange)
|
|
|
|
// Some diagnostics may have a useful top-level context to add to
|
|
// the code snippet output.
|
|
contextStr := hcled.ContextString(file, offset-1)
|
|
if contextStr != "" {
|
|
diagnostic.Snippet.Context = &contextStr
|
|
}
|
|
|
|
// Build the string of the code snippet, tracking at which byte of
|
|
// the file the snippet starts.
|
|
var codeStartByte int
|
|
sc := hcl.NewRangeScanner(src, highlightRange.Filename, bufio.ScanLines)
|
|
var code strings.Builder
|
|
for sc.Scan() {
|
|
lineRange := sc.Range()
|
|
if lineRange.Overlaps(snippetRange) {
|
|
if codeStartByte == 0 && code.Len() == 0 {
|
|
codeStartByte = lineRange.Start.Byte
|
|
}
|
|
code.Write(lineRange.SliceBytes(src))
|
|
code.WriteRune('\n')
|
|
}
|
|
}
|
|
codeStr := strings.TrimSuffix(code.String(), "\n")
|
|
diagnostic.Snippet.Code = codeStr
|
|
|
|
// Calculate the start and end byte of the highlight range relative
|
|
// to the code snippet string.
|
|
start := highlightRange.Start.Byte - codeStartByte
|
|
end := start + (highlightRange.End.Byte - highlightRange.Start.Byte)
|
|
if start > len(codeStr) {
|
|
start = len(codeStr)
|
|
}
|
|
if end > len(codeStr) {
|
|
end = len(codeStr)
|
|
}
|
|
diagnostic.Snippet.HighlightStartOffset = start
|
|
diagnostic.Snippet.HighlightEndOffset = end
|
|
|
|
if fromExpr := diag.FromExpr(); fromExpr != nil {
|
|
// We may also be able to generate information about the dynamic
|
|
// values of relevant variables at the point of evaluation, then.
|
|
// This is particularly useful for expressions that get evaluated
|
|
// multiple times with different values, such as blocks using
|
|
// "count" and "for_each", or within "for" expressions.
|
|
expr := fromExpr.Expression
|
|
ctx := fromExpr.EvalContext
|
|
vars := expr.Variables()
|
|
values := make([]DiagnosticExpressionValue, 0, len(vars))
|
|
seen := make(map[string]struct{}, len(vars))
|
|
Traversals:
|
|
for _, traversal := range vars {
|
|
for len(traversal) > 1 {
|
|
val, diags := traversal.TraverseAbs(ctx)
|
|
if diags.HasErrors() {
|
|
// Skip anything that generates errors, since we probably
|
|
// already have the same error in our diagnostics set
|
|
// already.
|
|
traversal = traversal[:len(traversal)-1]
|
|
continue
|
|
}
|
|
|
|
traversalStr := traversalStr(traversal)
|
|
if _, exists := seen[traversalStr]; exists {
|
|
continue Traversals // don't show duplicates when the same variable is referenced multiple times
|
|
}
|
|
value := DiagnosticExpressionValue{
|
|
Traversal: traversalStr,
|
|
}
|
|
switch {
|
|
case val.IsMarked():
|
|
// We won't say anything at all about sensitive values,
|
|
// because we might give away something that was
|
|
// sensitive about them.
|
|
value.Statement = "has a sensitive value"
|
|
case !val.IsKnown():
|
|
if ty := val.Type(); ty != cty.DynamicPseudoType {
|
|
value.Statement = fmt.Sprintf("is a %s, known only after apply", ty.FriendlyName())
|
|
} else {
|
|
value.Statement = "will be known only after apply"
|
|
}
|
|
default:
|
|
value.Statement = fmt.Sprintf("is %s", compactValueStr(val))
|
|
}
|
|
values = append(values, value)
|
|
seen[traversalStr] = struct{}{}
|
|
}
|
|
}
|
|
sort.Slice(values, func(i, j int) bool {
|
|
return values[i].Traversal < values[j].Traversal
|
|
})
|
|
diagnostic.Snippet.Values = values
|
|
}
|
|
}
|
|
}
|
|
|
|
return diagnostic
|
|
}
|
|
|
|
func parseRange(src []byte, rng hcl.Range) (*hcl.File, int) {
|
|
filename := rng.Filename
|
|
offset := rng.Start.Byte
|
|
|
|
// We need to re-parse here to get a *hcl.File we can interrogate. This
|
|
// is not awesome since we presumably already parsed the file earlier too,
|
|
// but this re-parsing is architecturally simpler than retaining all of
|
|
// the hcl.File objects and we only do this in the case of an error anyway
|
|
// so the overhead here is not a big problem.
|
|
parser := hclparse.NewParser()
|
|
var file *hcl.File
|
|
|
|
// Ignore diagnostics here as there is nothing we can do with them.
|
|
if strings.HasSuffix(filename, ".json") {
|
|
file, _ = parser.ParseJSON(src, filename)
|
|
} else {
|
|
file, _ = parser.ParseHCL(src, filename)
|
|
}
|
|
|
|
return file, offset
|
|
}
|
|
|
|
// compactValueStr produces a compact, single-line summary of a given value
|
|
// that is suitable for display in the UI.
|
|
//
|
|
// For primitives it returns a full representation, while for more complex
|
|
// types it instead summarizes the type, size, etc to produce something
|
|
// that is hopefully still somewhat useful but not as verbose as a rendering
|
|
// of the entire data structure.
|
|
func compactValueStr(val cty.Value) string {
|
|
// This is a specialized subset of value rendering tailored to producing
|
|
// helpful but concise messages in diagnostics. It is not comprehensive
|
|
// nor intended to be used for other purposes.
|
|
|
|
if val.IsMarked() {
|
|
// We check this in here just to make sure, but note that the caller
|
|
// of compactValueStr ought to have already checked this and skipped
|
|
// calling into compactValueStr anyway, so this shouldn't actually
|
|
// be reachable.
|
|
return "(sensitive value)"
|
|
}
|
|
|
|
// WARNING: We've only checked that the value isn't sensitive _shallowly_
|
|
// here, and so we must never show any element values from complex types
|
|
// in here. However, it's fine to show map keys and attribute names because
|
|
// those are never sensitive in isolation: the entire value would be
|
|
// sensitive in that case.
|
|
|
|
ty := val.Type()
|
|
switch {
|
|
case val.IsNull():
|
|
return "null"
|
|
case !val.IsKnown():
|
|
// Should never happen here because we should filter before we get
|
|
// in here, but we'll do something reasonable rather than panic.
|
|
return "(not yet known)"
|
|
case ty == cty.Bool:
|
|
if val.True() {
|
|
return "true"
|
|
}
|
|
return "false"
|
|
case ty == cty.Number:
|
|
bf := val.AsBigFloat()
|
|
return bf.Text('g', 10)
|
|
case ty == cty.String:
|
|
// Go string syntax is not exactly the same as HCL native string syntax,
|
|
// but we'll accept the minor edge-cases where this is different here
|
|
// for now, just to get something reasonable here.
|
|
return fmt.Sprintf("%q", val.AsString())
|
|
case ty.IsCollectionType() || ty.IsTupleType():
|
|
l := val.LengthInt()
|
|
switch l {
|
|
case 0:
|
|
return "empty " + ty.FriendlyName()
|
|
case 1:
|
|
return ty.FriendlyName() + " with 1 element"
|
|
default:
|
|
return fmt.Sprintf("%s with %d elements", ty.FriendlyName(), l)
|
|
}
|
|
case ty.IsObjectType():
|
|
atys := ty.AttributeTypes()
|
|
l := len(atys)
|
|
switch l {
|
|
case 0:
|
|
return "object with no attributes"
|
|
case 1:
|
|
var name string
|
|
for k := range atys {
|
|
name = k
|
|
}
|
|
return fmt.Sprintf("object with 1 attribute %q", name)
|
|
default:
|
|
return fmt.Sprintf("object with %d attributes", l)
|
|
}
|
|
default:
|
|
return ty.FriendlyName()
|
|
}
|
|
}
|
|
|
|
// traversalStr produces a representation of an HCL traversal that is compact,
|
|
// resembles HCL native syntax, and is suitable for display in the UI.
|
|
func traversalStr(traversal hcl.Traversal) string {
|
|
// This is a specialized subset of traversal rendering tailored to
|
|
// producing helpful contextual messages in diagnostics. It is not
|
|
// comprehensive nor intended to be used for other purposes.
|
|
|
|
var buf bytes.Buffer
|
|
for _, step := range traversal {
|
|
switch tStep := step.(type) {
|
|
case hcl.TraverseRoot:
|
|
buf.WriteString(tStep.Name)
|
|
case hcl.TraverseAttr:
|
|
buf.WriteByte('.')
|
|
buf.WriteString(tStep.Name)
|
|
case hcl.TraverseIndex:
|
|
buf.WriteByte('[')
|
|
if keyTy := tStep.Key.Type(); keyTy.IsPrimitiveType() {
|
|
buf.WriteString(compactValueStr(tStep.Key))
|
|
} else {
|
|
// We'll just use a placeholder for more complex values,
|
|
// since otherwise our result could grow ridiculously long.
|
|
buf.WriteString("...")
|
|
}
|
|
buf.WriteByte(']')
|
|
}
|
|
}
|
|
return buf.String()
|
|
}
|