133 lines
5.2 KiB
Go
133 lines
5.2 KiB
Go
package objchange
|
|
|
|
import (
|
|
"github.com/hashicorp/terraform/configs/configschema"
|
|
"github.com/zclconf/go-cty/cty"
|
|
)
|
|
|
|
// NormalizeObjectFromLegacySDK takes an object that may have been generated
|
|
// by the legacy Terraform SDK (i.e. returned from a provider with the
|
|
// LegacyTypeSystem opt-out set) and does its best to normalize it for the
|
|
// assumptions we would normally enforce if the provider had not opted out.
|
|
//
|
|
// In particular, this function guarantees that a value representing a nested
|
|
// block will never itself be unknown or null, instead representing that as
|
|
// a non-null value that may contain null/unknown values.
|
|
//
|
|
// The input value must still conform to the implied type of the given schema,
|
|
// or else this function may produce garbage results or panic. This is usually
|
|
// okay because type consistency is enforced when deserializing the value
|
|
// returned from the provider over the RPC wire protocol anyway.
|
|
func NormalizeObjectFromLegacySDK(val cty.Value, schema *configschema.Block) cty.Value {
|
|
if val == cty.NilVal || val.IsNull() {
|
|
// This should never happen in reasonable use, but we'll allow it
|
|
// and normalize to a null of the expected type rather than panicking
|
|
// below.
|
|
return cty.NullVal(schema.ImpliedType())
|
|
}
|
|
|
|
vals := make(map[string]cty.Value)
|
|
for name := range schema.Attributes {
|
|
// No normalization for attributes, since them being type-conformant
|
|
// is all that we require.
|
|
vals[name] = val.GetAttr(name)
|
|
}
|
|
for name, blockS := range schema.BlockTypes {
|
|
lv := val.GetAttr(name)
|
|
|
|
// Legacy SDK never generates dynamically-typed attributes and so our
|
|
// normalization code doesn't deal with them, but we need to make sure
|
|
// we still pass them through properly so that we don't interfere with
|
|
// objects generated by other SDKs.
|
|
if ty := blockS.Block.ImpliedType(); ty.HasDynamicTypes() {
|
|
vals[name] = lv
|
|
continue
|
|
}
|
|
|
|
switch blockS.Nesting {
|
|
case configschema.NestingSingle, configschema.NestingGroup:
|
|
if lv.IsKnown() {
|
|
if lv.IsNull() && blockS.Nesting == configschema.NestingGroup {
|
|
vals[name] = blockS.EmptyValue()
|
|
} else {
|
|
vals[name] = NormalizeObjectFromLegacySDK(lv, &blockS.Block)
|
|
}
|
|
} else {
|
|
vals[name] = unknownBlockStub(&blockS.Block)
|
|
}
|
|
case configschema.NestingList:
|
|
switch {
|
|
case !lv.IsKnown():
|
|
vals[name] = cty.ListVal([]cty.Value{unknownBlockStub(&blockS.Block)})
|
|
case lv.IsNull() || lv.LengthInt() == 0:
|
|
vals[name] = cty.ListValEmpty(blockS.Block.ImpliedType())
|
|
default:
|
|
subVals := make([]cty.Value, 0, lv.LengthInt())
|
|
for it := lv.ElementIterator(); it.Next(); {
|
|
_, subVal := it.Element()
|
|
subVals = append(subVals, NormalizeObjectFromLegacySDK(subVal, &blockS.Block))
|
|
}
|
|
vals[name] = cty.ListVal(subVals)
|
|
}
|
|
case configschema.NestingSet:
|
|
switch {
|
|
case !lv.IsKnown():
|
|
vals[name] = cty.SetVal([]cty.Value{unknownBlockStub(&blockS.Block)})
|
|
case lv.IsNull() || lv.LengthInt() == 0:
|
|
vals[name] = cty.SetValEmpty(blockS.Block.ImpliedType())
|
|
default:
|
|
subVals := make([]cty.Value, 0, lv.LengthInt())
|
|
for it := lv.ElementIterator(); it.Next(); {
|
|
_, subVal := it.Element()
|
|
subVals = append(subVals, NormalizeObjectFromLegacySDK(subVal, &blockS.Block))
|
|
}
|
|
vals[name] = cty.SetVal(subVals)
|
|
}
|
|
default:
|
|
// The legacy SDK doesn't support NestingMap, so we just assume
|
|
// maps are always okay. (If not, we would've detected and returned
|
|
// an error to the user before we got here.)
|
|
vals[name] = lv
|
|
}
|
|
}
|
|
return cty.ObjectVal(vals)
|
|
}
|
|
|
|
// unknownBlockStub constructs an object value that approximates an unknown
|
|
// block by producing a known block object with all of its leaf attribute
|
|
// values set to unknown.
|
|
//
|
|
// Blocks themselves cannot be unknown, so if the legacy SDK tries to return
|
|
// such a thing, we'll use this result instead. This convention mimics how
|
|
// the dynamic block feature deals with being asked to iterate over an unknown
|
|
// value, because our value-checking functions already accept this convention
|
|
// as a special case.
|
|
func unknownBlockStub(schema *configschema.Block) cty.Value {
|
|
vals := make(map[string]cty.Value)
|
|
for name, attrS := range schema.Attributes {
|
|
vals[name] = cty.UnknownVal(attrS.Type)
|
|
}
|
|
for name, blockS := range schema.BlockTypes {
|
|
switch blockS.Nesting {
|
|
case configschema.NestingSingle, configschema.NestingGroup:
|
|
vals[name] = unknownBlockStub(&blockS.Block)
|
|
case configschema.NestingList:
|
|
// In principle we may be expected to produce a tuple value here,
|
|
// if there are any dynamically-typed attributes in our nested block,
|
|
// but the legacy SDK doesn't support that, so we just assume it'll
|
|
// never be necessary to normalize those. (Incorrect usage in any
|
|
// other SDK would be caught and returned as an error before we
|
|
// get here.)
|
|
vals[name] = cty.ListVal([]cty.Value{unknownBlockStub(&blockS.Block)})
|
|
case configschema.NestingSet:
|
|
vals[name] = cty.SetVal([]cty.Value{unknownBlockStub(&blockS.Block)})
|
|
case configschema.NestingMap:
|
|
// A nesting map can never be unknown since we then wouldn't know
|
|
// what the keys are. (Legacy SDK doesn't support NestingMap anyway,
|
|
// so this should never arise.)
|
|
vals[name] = cty.MapValEmpty(blockS.Block.ImpliedType())
|
|
}
|
|
}
|
|
return cty.ObjectVal(vals)
|
|
}
|