terraform/terraform/context.go

1051 lines
24 KiB
Go

package terraform
import (
"fmt"
"log"
"strconv"
"strings"
"sync"
"sync/atomic"
"github.com/hashicorp/terraform/config"
"github.com/hashicorp/terraform/depgraph"
"github.com/hashicorp/terraform/helper/multierror"
)
// This is a function type used to implement a walker for the resource
// tree internally on the Terraform structure.
type genericWalkFunc func(*Resource) error
// Context represents all the context that Terraform needs in order to
// perform operations on infrastructure. This structure is built using
// ContextOpts and NewContext. See the documentation for those.
//
// Additionally, a context can be created from a Plan using Plan.Context.
type Context struct {
config *config.Config
diff *Diff
hooks []Hook
state *State
providers map[string]ResourceProviderFactory
provisioners map[string]ResourceProvisionerFactory
variables map[string]string
defaultVars map[string]string
l sync.Mutex // Lock acquired during any task
parCh chan struct{} // Semaphore used to limit parallelism
sl sync.RWMutex // Lock acquired to R/W internal data
runCh <-chan struct{}
sh *stopHook
}
// ContextOpts are the user-creatable configuration structure to create
// a context with NewContext.
type ContextOpts struct {
Config *config.Config
Diff *Diff
Hooks []Hook
Parallelism int
State *State
Providers map[string]ResourceProviderFactory
Provisioners map[string]ResourceProvisionerFactory
Variables map[string]string
}
// NewContext creates a new context.
//
// Once a context is created, the pointer values within ContextOpts should
// not be mutated in any way, since the pointers are copied, not the values
// themselves.
func NewContext(opts *ContextOpts) *Context {
sh := new(stopHook)
// Copy all the hooks and add our stop hook. We don't append directly
// to the Config so that we're not modifying that in-place.
hooks := make([]Hook, len(opts.Hooks)+1)
copy(hooks, opts.Hooks)
hooks[len(opts.Hooks)] = sh
// Make the parallelism channel
par := opts.Parallelism
if par == 0 {
par = 10
}
parCh := make(chan struct{}, par)
// Calculate all the default variables
defaultVars := make(map[string]string)
if opts.Config != nil {
for _, v := range opts.Config.Variables {
for k, val := range v.DefaultsMap() {
defaultVars[k] = val
}
}
}
return &Context{
config: opts.Config,
diff: opts.Diff,
hooks: hooks,
state: opts.State,
providers: opts.Providers,
provisioners: opts.Provisioners,
variables: opts.Variables,
defaultVars: defaultVars,
parCh: parCh,
sh: sh,
}
}
// Apply applies the changes represented by this context and returns
// the resulting state.
//
// In addition to returning the resulting state, this context is updated
// with the latest state.
func (c *Context) Apply() (*State, error) {
v := c.acquireRun()
defer c.releaseRun(v)
g, err := Graph(&GraphOpts{
Config: c.config,
Diff: c.diff,
Providers: c.providers,
Provisioners: c.provisioners,
State: c.state,
})
if err != nil {
return nil, err
}
// Set our state right away. No matter what, this IS our new state,
// even if there is an error below.
c.state = c.state.deepcopy()
// Walk
log.Printf("[INFO] Apply walk starting")
err = g.Walk(c.applyWalkFn())
log.Printf("[INFO] Apply walk complete")
// Prune the state so that we have as clean a state as possible
c.state.prune()
// If we have no errors, then calculate the outputs if we have any
if err == nil && len(c.config.Outputs) > 0 && len(c.state.Resources) > 0 {
c.state.Outputs = make(map[string]string)
for _, o := range c.config.Outputs {
if err = c.computeVars(o.RawConfig); err != nil {
break
}
c.state.Outputs[o.Name] = o.RawConfig.Config()["value"].(string)
}
}
return c.state, err
}
// Graph returns the graph for this context.
func (c *Context) Graph() (*depgraph.Graph, error) {
return c.graph()
}
// Plan generates an execution plan for the given context.
//
// The execution plan encapsulates the context and can be stored
// in order to reinstantiate a context later for Apply.
//
// Plan also updates the diff of this context to be the diff generated
// by the plan, so Apply can be called after.
func (c *Context) Plan(opts *PlanOpts) (*Plan, error) {
v := c.acquireRun()
defer c.releaseRun(v)
g, err := Graph(&GraphOpts{
Config: c.config,
Providers: c.providers,
Provisioners: c.provisioners,
State: c.state,
})
if err != nil {
return nil, err
}
p := &Plan{
Config: c.config,
Vars: c.variables,
State: c.state,
}
var walkFn depgraph.WalkFunc
if opts != nil && opts.Destroy {
// If we're destroying, we use a different walk function since it
// doesn't need as many details.
walkFn = c.planDestroyWalkFn(p)
} else {
// Set our state to be something temporary. We do this so that
// the plan can update a fake state so that variables work, then
// we replace it back with our old state.
old := c.state
c.state = old.deepcopy()
defer func() {
c.state = old
}()
walkFn = c.planWalkFn(p)
}
// Walk and run the plan
err = g.Walk(walkFn)
// Update the diff so that our context is up-to-date
c.diff = p.Diff
return p, err
}
// Refresh goes through all the resources in the state and refreshes them
// to their latest state. This will update the state that this context
// works with, along with returning it.
//
// Even in the case an error is returned, the state will be returned and
// will potentially be partially updated.
func (c *Context) Refresh() (*State, error) {
v := c.acquireRun()
defer c.releaseRun(v)
g, err := Graph(&GraphOpts{
Config: c.config,
Providers: c.providers,
Provisioners: c.provisioners,
State: c.state,
})
if err != nil {
return c.state, err
}
// Update our state
c.state = c.state.deepcopy()
err = g.Walk(c.refreshWalkFn())
return c.state, err
}
// Stop stops the running task.
//
// Stop will block until the task completes.
func (c *Context) Stop() {
c.l.Lock()
ch := c.runCh
// If we aren't running, then just return
if ch == nil {
c.l.Unlock()
return
}
// Tell the hook we want to stop
c.sh.Stop()
// Wait for us to stop
c.l.Unlock()
<-ch
}
// Validate validates the configuration and returns any warnings or errors.
func (c *Context) Validate() ([]string, []error) {
var rerr *multierror.Error
// Validate the configuration itself
if err := c.config.Validate(); err != nil {
rerr = multierror.ErrorAppend(rerr, err)
}
// Validate the user variables
if errs := smcUserVariables(c.config, c.variables); len(errs) > 0 {
rerr = multierror.ErrorAppend(rerr, errs...)
}
// Validate the graph
g, err := c.graph()
if err != nil {
rerr = multierror.ErrorAppend(rerr, fmt.Errorf(
"Error creating graph: %s", err))
}
// Walk the graph and validate all the configs
var warns []string
var errs []error
if g != nil {
err = g.Walk(c.validateWalkFn(&warns, &errs))
if err != nil {
rerr = multierror.ErrorAppend(rerr, fmt.Errorf(
"Error validating resources in graph: %s", err))
}
if len(errs) > 0 {
rerr = multierror.ErrorAppend(rerr, errs...)
}
}
errs = nil
if rerr != nil && len(rerr.Errors) > 0 {
errs = rerr.Errors
}
return warns, errs
}
// computeVars takes the State and given RawConfig and processes all
// the variables. This dynamically discovers the attributes instead of
// using a static map[string]string that the genericWalkFn uses.
func (c *Context) computeVars(raw *config.RawConfig) error {
// If there isn't a raw configuration, don't do anything
if raw == nil {
return nil
}
// Start building up the variables. First, defaults
vs := make(map[string]string)
for k, v := range c.defaultVars {
vs[k] = v
}
// Next, the actual computed variables
for n, rawV := range raw.Variables {
switch v := rawV.(type) {
case *config.ResourceVariable:
var attr string
var err error
if v.Multi && v.Index == -1 {
attr, err = c.computeResourceMultiVariable(v)
} else {
attr, err = c.computeResourceVariable(v)
}
if err != nil {
return err
}
vs[n] = attr
case *config.UserVariable:
val, ok := c.variables[v.Name]
if ok {
vs[n] = val
continue
}
// Look up if we have any variables with this prefix because
// those are map overrides. Include those.
for k, val := range c.variables {
if strings.HasPrefix(k, v.Name+".") {
vs["var."+k] = val
}
}
}
}
// Interpolate the variables
return raw.Interpolate(vs)
}
func (c *Context) computeResourceVariable(
v *config.ResourceVariable) (string, error) {
id := v.ResourceId()
if v.Multi {
id = fmt.Sprintf("%s.%d", id, v.Index)
}
c.sl.RLock()
defer c.sl.RUnlock()
r, ok := c.state.Resources[id]
if !ok {
return "", fmt.Errorf(
"Resource '%s' not found for variable '%s'",
id,
v.FullKey())
}
attr, ok := r.Attributes[v.Field]
if ok {
return attr, nil
}
// We didn't find the exact field, so lets separate the dots
// and see if anything along the way is a computed set. i.e. if
// we have "foo.0.bar" as the field, check to see if "foo" is
// a computed list. If so, then the whole thing is computed.
parts := strings.Split(v.Field, ".")
if len(parts) > 1 {
for i := 1; i < len(parts); i++ {
key := fmt.Sprintf("%s.#", strings.Join(parts[:i], "."))
if attr, ok := r.Attributes[key]; ok {
return attr, nil
}
}
}
return "", fmt.Errorf(
"Resource '%s' does not have attribute '%s' "+
"for variable '%s'",
id,
v.Field,
v.FullKey())
}
func (c *Context) computeResourceMultiVariable(
v *config.ResourceVariable) (string, error) {
c.sl.RLock()
defer c.sl.RUnlock()
// Get the resource from the configuration so we can know how
// many of the resource there is.
var cr *config.Resource
for _, r := range c.config.Resources {
if r.Id() == v.ResourceId() {
cr = r
break
}
}
if cr == nil {
return "", fmt.Errorf(
"Resource '%s' not found for variable '%s'",
v.ResourceId(),
v.FullKey())
}
var values []string
for i := 0; i < cr.Count; i++ {
id := fmt.Sprintf("%s.%d", v.ResourceId(), i)
// If we're dealing with only a single resource, then the
// ID doesn't have a trailing index.
if cr.Count == 1 {
id = v.ResourceId()
}
r, ok := c.state.Resources[id]
if !ok {
continue
}
attr, ok := r.Attributes[v.Field]
if !ok {
continue
}
values = append(values, attr)
}
if len(values) == 0 {
return "", fmt.Errorf(
"Resource '%s' does not have attribute '%s' "+
"for variable '%s'",
v.ResourceId(),
v.Field,
v.FullKey())
}
return strings.Join(values, ","), nil
}
func (c *Context) graph() (*depgraph.Graph, error) {
return Graph(&GraphOpts{
Config: c.config,
Diff: c.diff,
Providers: c.providers,
Provisioners: c.provisioners,
State: c.state,
})
}
func (c *Context) acquireRun() chan<- struct{} {
c.l.Lock()
defer c.l.Unlock()
// Wait for no channel to exist
for c.runCh != nil {
c.l.Unlock()
ch := c.runCh
<-ch
c.l.Lock()
}
ch := make(chan struct{})
c.runCh = ch
return ch
}
func (c *Context) releaseRun(ch chan<- struct{}) {
c.l.Lock()
defer c.l.Unlock()
close(ch)
c.runCh = nil
c.sh.Reset()
}
func (c *Context) applyWalkFn() depgraph.WalkFunc {
cb := func(r *Resource) error {
var err error
diff := r.Diff
if diff.Empty() {
log.Printf("[DEBUG] %s: Diff is empty. Will not apply.", r.Id)
return nil
}
if !diff.Destroy {
// Since we need the configuration, interpolate the variables
if err := r.Config.interpolate(c); err != nil {
return err
}
diff, err = r.Provider.Diff(r.State, r.Config)
if err != nil {
return err
}
// This should never happen because we check if Diff.Empty above.
// If this happened, then the diff above returned a bad diff.
if diff == nil {
return fmt.Errorf(
"%s: diff became nil during Apply. This is a bug with "+
"the resource provider. Please report a bug.",
r.Id)
}
// Delete id from the diff because it is dependent on
// our internal plan function.
delete(r.Diff.Attributes, "id")
delete(diff.Attributes, "id")
// Verify the diffs are the same
if !r.Diff.Same(diff) {
log.Printf(
"[ERROR] Diffs don't match.\n\nDiff 1: %#v"+
"\n\nDiff 2: %#v",
r.Diff, diff)
return fmt.Errorf(
"%s: diffs didn't match during apply. This is a "+
"bug with the resource provider, please report a bug.",
r.Id)
}
}
// If we do not have any connection info, initialize
if r.State.ConnInfo == nil {
r.State.ConnInfo = make(map[string]string)
}
// Remove any output values from the diff
for k, ad := range diff.Attributes {
if ad.Type == DiffAttrOutput {
delete(diff.Attributes, k)
}
}
for _, h := range c.hooks {
handleHook(h.PreApply(r.Id, r.State, diff))
}
// With the completed diff, apply!
log.Printf("[DEBUG] %s: Executing Apply", r.Id)
rs, applyerr := r.Provider.Apply(r.State, diff)
var errs []error
if applyerr != nil {
errs = append(errs, applyerr)
}
// Make sure the result is instantiated
if rs == nil {
rs = new(ResourceState)
}
// Force the resource state type to be our type
rs.Type = r.State.Type
// Force the "id" attribute to be our ID
if rs.ID != "" {
if rs.Attributes == nil {
rs.Attributes = make(map[string]string)
}
rs.Attributes["id"] = rs.ID
}
for ak, av := range rs.Attributes {
// If the value is the unknown variable value, then it is an error.
// In this case we record the error and remove it from the state
if av == config.UnknownVariableValue {
errs = append(errs, fmt.Errorf(
"Attribute with unknown value: %s", ak))
delete(rs.Attributes, ak)
}
}
// Update the resulting diff
c.sl.Lock()
if rs.ID == "" {
delete(c.state.Resources, r.Id)
delete(c.state.Tainted, r.Id)
} else {
c.state.Resources[r.Id] = rs
// We always mark the resource as tainted here in case a
// hook below during provisioning does HookActionStop. This
// way, we keep the resource tainted.
c.state.Tainted[r.Id] = struct{}{}
}
c.sl.Unlock()
// Invoke any provisioners we have defined. This is only done
// if the resource was created, as updates or deletes do not
// invoke provisioners.
//
// Additionally, we need to be careful to not run this if there
// was an error during the provider apply.
tainted := false
if applyerr == nil && r.State.ID == "" && len(r.Provisioners) > 0 {
for _, h := range c.hooks {
handleHook(h.PreProvisionResource(r.Id, r.State))
}
if err := c.applyProvisioners(r, rs); err != nil {
errs = append(errs, err)
tainted = true
}
for _, h := range c.hooks {
handleHook(h.PostProvisionResource(r.Id, r.State))
}
}
c.sl.Lock()
if tainted {
log.Printf("[DEBUG] %s: Marking as tainted", r.Id)
c.state.Tainted[r.Id] = struct{}{}
} else {
delete(c.state.Tainted, r.Id)
}
c.sl.Unlock()
// Update the state for the resource itself
r.State = rs
r.Tainted = tainted
for _, h := range c.hooks {
handleHook(h.PostApply(r.Id, r.State, applyerr))
}
// Determine the new state and update variables
err = nil
if len(errs) > 0 {
err = &multierror.Error{Errors: errs}
}
return err
}
return c.genericWalkFn(cb)
}
// applyProvisioners is used to run any provisioners a resource has
// defined after the resource creation has already completed.
func (c *Context) applyProvisioners(r *Resource, rs *ResourceState) error {
// Store the original connection info, restore later
origConnInfo := rs.ConnInfo
defer func() {
rs.ConnInfo = origConnInfo
}()
for _, prov := range r.Provisioners {
// Interpolate since we may have variables that depend on the
// local resource.
if err := prov.Config.interpolate(c); err != nil {
return err
}
// Interpolate the conn info, since it may contain variables
connInfo := NewResourceConfig(prov.ConnInfo)
if err := connInfo.interpolate(c); err != nil {
return err
}
// Merge the connection information
overlay := make(map[string]string)
if origConnInfo != nil {
for k, v := range origConnInfo {
overlay[k] = v
}
}
for k, v := range connInfo.Config {
switch vt := v.(type) {
case string:
overlay[k] = vt
case int64:
overlay[k] = strconv.FormatInt(vt, 10)
case int32:
overlay[k] = strconv.FormatInt(int64(vt), 10)
case int:
overlay[k] = strconv.FormatInt(int64(vt), 10)
case float32:
overlay[k] = strconv.FormatFloat(float64(vt), 'f', 3, 32)
case float64:
overlay[k] = strconv.FormatFloat(vt, 'f', 3, 64)
case bool:
overlay[k] = strconv.FormatBool(vt)
default:
overlay[k] = fmt.Sprintf("%v", vt)
}
}
rs.ConnInfo = overlay
// Invoke the Provisioner
for _, h := range c.hooks {
handleHook(h.PreProvision(r.Id, prov.Type))
}
if err := prov.Provisioner.Apply(rs, prov.Config); err != nil {
return err
}
for _, h := range c.hooks {
handleHook(h.PostProvision(r.Id, prov.Type))
}
}
return nil
}
func (c *Context) planWalkFn(result *Plan) depgraph.WalkFunc {
var l sync.Mutex
// Initialize the result
result.init()
cb := func(r *Resource) error {
var diff *ResourceDiff
for _, h := range c.hooks {
handleHook(h.PreDiff(r.Id, r.State))
}
if r.Config == nil {
log.Printf("[DEBUG] %s: Orphan, marking for destroy", r.Id)
// This is an orphan (no config), so we mark it to be destroyed
diff = &ResourceDiff{Destroy: true}
} else {
// Make sure the configuration is interpolated
if err := r.Config.interpolate(c); err != nil {
return err
}
// Get a diff from the newest state
log.Printf("[DEBUG] %s: Executing diff", r.Id)
var err error
state := r.State
if r.Tainted {
// If we're tainted, we pretend to create a new thing.
state = new(ResourceState)
state.Type = r.State.Type
}
diff, err = r.Provider.Diff(state, r.Config)
if err != nil {
return err
}
}
if diff == nil {
diff = new(ResourceDiff)
}
if r.Tainted {
// Tainted resources must also be destroyed
log.Printf("[DEBUG] %s: Tainted, marking for destroy", r.Id)
diff.Destroy = true
}
if diff.RequiresNew() && r.State.ID != "" {
// This will also require a destroy
diff.Destroy = true
}
if diff.RequiresNew() || r.State.ID == "" {
// Add diff to compute new ID
diff.init()
diff.Attributes["id"] = &ResourceAttrDiff{
Old: r.State.Attributes["id"],
NewComputed: true,
RequiresNew: true,
Type: DiffAttrOutput,
}
}
l.Lock()
if !diff.Empty() {
result.Diff.Resources[r.Id] = diff
}
l.Unlock()
for _, h := range c.hooks {
handleHook(h.PostDiff(r.Id, diff))
}
// Determine the new state and update variables
if !diff.Empty() {
r.State = r.State.MergeDiff(diff)
}
// Update our internal state so that variable computation works
c.sl.Lock()
defer c.sl.Unlock()
c.state.Resources[r.Id] = r.State
return nil
}
return c.genericWalkFn(cb)
}
func (c *Context) planDestroyWalkFn(result *Plan) depgraph.WalkFunc {
var l sync.Mutex
// Initialize the result
result.init()
return func(n *depgraph.Noun) error {
rn, ok := n.Meta.(*GraphNodeResource)
if !ok {
return nil
}
r := rn.Resource
if r.State.ID != "" {
log.Printf("[DEBUG] %s: Making for destroy", r.Id)
l.Lock()
defer l.Unlock()
result.Diff.Resources[r.Id] = &ResourceDiff{Destroy: true}
} else {
log.Printf("[DEBUG] %s: Not marking for destroy, no ID", r.Id)
}
return nil
}
}
func (c *Context) refreshWalkFn() depgraph.WalkFunc {
cb := func(r *Resource) error {
if r.State.ID == "" {
log.Printf("[DEBUG] %s: Not refreshing, ID is empty", r.Id)
return nil
}
for _, h := range c.hooks {
handleHook(h.PreRefresh(r.Id, r.State))
}
rs, err := r.Provider.Refresh(r.State)
if err != nil {
return err
}
if rs == nil {
rs = new(ResourceState)
}
// Fix the type to be the type we have
rs.Type = r.State.Type
c.sl.Lock()
if rs.ID == "" {
delete(c.state.Resources, r.Id)
} else {
c.state.Resources[r.Id] = rs
}
c.sl.Unlock()
for _, h := range c.hooks {
handleHook(h.PostRefresh(r.Id, rs))
}
return nil
}
return c.genericWalkFn(cb)
}
func (c *Context) validateWalkFn(rws *[]string, res *[]error) depgraph.WalkFunc {
var l sync.Mutex
return func(n *depgraph.Noun) error {
// If it is the root node, ignore
if n.Name == GraphRootNode {
return nil
}
switch rn := n.Meta.(type) {
case *GraphNodeResource:
if rn.Resource == nil {
panic("resource should never be nil")
}
// If it doesn't have a provider, that is a different problem
if rn.Resource.Provider == nil {
return nil
}
// Don't validate orphans since they never have a config
if rn.Orphan {
return nil
}
log.Printf("[INFO] Validating resource: %s", rn.Resource.Id)
ws, es := rn.Resource.Provider.ValidateResource(
rn.Type, rn.Resource.Config)
for i, w := range ws {
ws[i] = fmt.Sprintf("'%s' warning: %s", rn.Resource.Id, w)
}
for i, e := range es {
es[i] = fmt.Errorf("'%s' error: %s", rn.Resource.Id, e)
}
l.Lock()
*rws = append(*rws, ws...)
*res = append(*res, es...)
l.Unlock()
for idx, p := range rn.Resource.Provisioners {
ws, es := p.Provisioner.Validate(p.Config)
for i, w := range ws {
ws[i] = fmt.Sprintf("'%s.provisioner.%d' warning: %s", rn.Resource.Id, idx, w)
}
for i, e := range es {
es[i] = fmt.Errorf("'%s.provisioner.%d' error: %s", rn.Resource.Id, idx, e)
}
l.Lock()
*rws = append(*rws, ws...)
*res = append(*res, es...)
l.Unlock()
}
case *GraphNodeResourceProvider:
var raw *config.RawConfig
if rn.Config != nil {
raw = rn.Config.RawConfig
}
rc := NewResourceConfig(raw)
for k, p := range rn.Providers {
log.Printf("[INFO] Validating provider: %s", k)
ws, es := p.Validate(rc)
for i, w := range ws {
ws[i] = fmt.Sprintf("Provider '%s' warning: %s", k, w)
}
for i, e := range es {
es[i] = fmt.Errorf("Provider '%s' error: %s", k, e)
}
l.Lock()
*rws = append(*rws, ws...)
*res = append(*res, es...)
l.Unlock()
}
}
return nil
}
}
func (c *Context) genericWalkFn(cb genericWalkFunc) depgraph.WalkFunc {
// This will keep track of whether we're stopped or not
var stop uint32 = 0
return func(n *depgraph.Noun) error {
// If it is the root node, ignore
if n.Name == GraphRootNode {
return nil
}
// If we're stopped, return right away
if atomic.LoadUint32(&stop) != 0 {
return nil
}
// Limit parallelism
c.parCh <- struct{}{}
defer func() {
<-c.parCh
}()
switch m := n.Meta.(type) {
case *GraphNodeResource:
// Continue, we care about this the most
case *GraphNodeResourceMeta:
// Skip it
return nil
case *GraphNodeResourceProvider:
// Interpolate in the variables and configure all the providers
var raw *config.RawConfig
if m.Config != nil {
raw = m.Config.RawConfig
}
rc := NewResourceConfig(raw)
rc.interpolate(c)
for k, p := range m.Providers {
log.Printf("[INFO] Configuring provider: %s", k)
err := p.Configure(rc)
if err != nil {
return err
}
}
return nil
default:
panic(fmt.Sprintf("unknown graph node: %#v", n.Meta))
}
rn := n.Meta.(*GraphNodeResource)
// Make sure that at least some resource configuration is set
if !rn.Orphan {
if rn.Config == nil {
rn.Resource.Config = new(ResourceConfig)
} else {
rn.Resource.Config = NewResourceConfig(rn.Config.RawConfig)
}
} else {
rn.Resource.Config = nil
}
// Handle recovery of special panic scenarios
defer func() {
if v := recover(); v != nil {
if v == HookActionHalt {
atomic.StoreUint32(&stop, 1)
} else {
panic(v)
}
}
}()
// Call the callack
log.Printf(
"[INFO] Walking: %s (Graph node: %s)",
rn.Resource.Id,
n.Name)
if err := cb(rn.Resource); err != nil {
log.Printf("[ERROR] Error walking '%s': %s", rn.Resource.Id, err)
return err
}
return nil
}
}