2b2ac1f6de
In an earlier change we switched to defining our own sets of detectors, getters, etc for go-getter in order to insulate us from upstream changes to those sets that might otherwise change the user-visible behavior of Terraform's module installer. However, we apparently neglected to actually refer to our local set of detectors, and continued to refer to the upstream set. Here we catch up with the latest detectors from upstream (taken from the version of go-getter we currently have vendored) and start using that fixed set. Currently we are maintaining these custom go-getter sets in two places due to the configload vs. initwd distinction. That was already true for goGetterGetters and goGetterDecompressors, and so I've preserved that for now just to keep this change relatively simple; in later change it would be nice to factor these "get with go getter" functions out into a shared location which we can call from both configload and initwd. |
||
---|---|---|
.github | ||
addrs | ||
backend | ||
builtin | ||
command | ||
communicator | ||
config | ||
configs | ||
contrib | ||
dag | ||
digraph | ||
docs | ||
e2e | ||
examples | ||
experiments | ||
flatmap | ||
helper | ||
httpclient | ||
internal | ||
lang | ||
moduledeps | ||
plans | ||
plugin | ||
providers | ||
provisioners | ||
registry | ||
repl | ||
scripts | ||
state | ||
states | ||
terraform | ||
tfdiags | ||
tools | ||
vendor | ||
version | ||
website | ||
.gitignore | ||
.go-version | ||
.hashibot.hcl | ||
.tfdev | ||
.travis.yml | ||
BUILDING.md | ||
CHANGELOG.md | ||
CODEOWNERS | ||
Dockerfile | ||
LICENSE | ||
Makefile | ||
README.md | ||
checkpoint.go | ||
commands.go | ||
config.go | ||
go.mod | ||
go.sum | ||
help.go | ||
main.go | ||
main_test.go | ||
panic.go | ||
plugins.go | ||
signal_unix.go | ||
signal_windows.go | ||
synchronized_writers.go | ||
version.go |
README.md
Terraform
- Website: https://www.terraform.io
- Mailing list: Google Groups
Terraform is a tool for building, changing, and versioning infrastructure safely and efficiently. Terraform can manage existing and popular service providers as well as custom in-house solutions.
The key features of Terraform are:
-
Infrastructure as Code: Infrastructure is described using a high-level configuration syntax. This allows a blueprint of your datacenter to be versioned and treated as you would any other code. Additionally, infrastructure can be shared and re-used.
-
Execution Plans: Terraform has a "planning" step where it generates an execution plan. The execution plan shows what Terraform will do when you call apply. This lets you avoid any surprises when Terraform manipulates infrastructure.
-
Resource Graph: Terraform builds a graph of all your resources, and parallelizes the creation and modification of any non-dependent resources. Because of this, Terraform builds infrastructure as efficiently as possible, and operators get insight into dependencies in their infrastructure.
-
Change Automation: Complex changesets can be applied to your infrastructure with minimal human interaction. With the previously mentioned execution plan and resource graph, you know exactly what Terraform will change and in what order, avoiding many possible human errors.
For more information, see the introduction section of the Terraform website.
Getting Started & Documentation
If you're new to Terraform and want to get started creating infrastructure, please checkout our Getting Started guide, available on the Terraform website.
All documentation is available on the Terraform website:
Developing Terraform
This repository contains only Terraform core, which includes the command line interface and the main graph engine. Providers are implemented as plugins that each have their own repository in the terraform-providers
organization on GitHub. Instructions for developing each provider are in the associated README file. For more information, see the provider development overview.
To learn more about compiling Terraform and contributing suggested changes, please refer to the contributing guide.