27ad9861ce
Several top-level block types in the Terraform language have a body where two different schemas are overlayed on top of one another: Terraform first looks for "meta-arguments" that are built into the language, and then evaluates all of the remaining arguments against some externally-defined schema whose content is not fully controlled by Terraform. So far we've been cautiously adding new meta-arguments in these namespaces after research shows us that there are relatively few existing providers or modules that would have functionality masked by those additions, but that isn't really a viable path forward as we prepare to make stronger compatibility promises. In an earlier commit we've introduced the foundational parts of a new language versioning mechanism called "editions" which should allow us to make per-module-opt-in breaking changes in the future, but these shared namespaces remain a liability because it would be annoying if adopting a new edition made it impossible to use a feature of a third-party provider or module that was already using a name that has now become reserved in the new edition. This commit introduces a new syntax intended to be a rarely-used escape hatch for that situation. When we're designing new editions we will do our best to choose names that don't conflict with commonly-used providers and modules, but there are many providers and modules that we cannot see and so there is a risk that any name we might choose could collide with at least one existing provider or module. The automatic migration tool to upgrade an existing module to a new edition should therefore detect that situation and make use of this escaping block syntax in order to retain the existing functionality until all the called providers or modules are updated to no longer use conflicting names. Although we can't put in technical constraints on using this feature for other purposes (because we don't know yet what future editions will add), this mechanism is intentionally not documented for now because it serves no immediate purpose. In effect, this change is just squatting on the syntax of a special block type named "_" so that later editions can make use of it without it _also_ conflicting, creating a confusing nested escaping situation. However, the first time a new edition actually makes use of this syntax we should then document alongside the meta-arguments so folks can understand the meaning of escaping blocks produced by edition upgrade tools. |
||
---|---|---|
.circleci | ||
.github | ||
addrs | ||
backend | ||
builtin | ||
command | ||
communicator | ||
configs | ||
dag | ||
docs | ||
e2e | ||
experiments | ||
httpclient | ||
instances | ||
internal | ||
lang | ||
moduledeps | ||
plans | ||
plugin | ||
plugin6 | ||
providers | ||
provisioners | ||
registry | ||
repl | ||
scripts | ||
states | ||
terraform | ||
tfdiags | ||
tools | ||
version | ||
website | ||
.gitignore | ||
.go-version | ||
.tfdev | ||
BUGPROCESS.md | ||
CHANGELOG.md | ||
CODEOWNERS | ||
Dockerfile | ||
LICENSE | ||
Makefile | ||
README.md | ||
checkpoint.go | ||
codecov.yml | ||
commands.go | ||
go.mod | ||
go.sum | ||
help.go | ||
main.go | ||
main_test.go | ||
plugins.go | ||
provider_source.go | ||
signal_unix.go | ||
signal_windows.go | ||
version.go |
README.md
Terraform
- Website: https://www.terraform.io
- Forums: HashiCorp Discuss
- Documentation: https://www.terraform.io/docs/
- Tutorials: HashiCorp's Learn Platform
- Certification Exam: HashiCorp Certified: Terraform Associate
Terraform is a tool for building, changing, and versioning infrastructure safely and efficiently. Terraform can manage existing and popular service providers as well as custom in-house solutions.
The key features of Terraform are:
-
Infrastructure as Code: Infrastructure is described using a high-level configuration syntax. This allows a blueprint of your datacenter to be versioned and treated as you would any other code. Additionally, infrastructure can be shared and re-used.
-
Execution Plans: Terraform has a "planning" step where it generates an execution plan. The execution plan shows what Terraform will do when you call apply. This lets you avoid any surprises when Terraform manipulates infrastructure.
-
Resource Graph: Terraform builds a graph of all your resources, and parallelizes the creation and modification of any non-dependent resources. Because of this, Terraform builds infrastructure as efficiently as possible, and operators get insight into dependencies in their infrastructure.
-
Change Automation: Complex changesets can be applied to your infrastructure with minimal human interaction. With the previously mentioned execution plan and resource graph, you know exactly what Terraform will change and in what order, avoiding many possible human errors.
For more information, see the introduction section of the Terraform website.
Getting Started & Documentation
Documentation is available on the Terraform website:
If you're new to Terraform and want to get started creating infrastructure, please check out our Getting Started guides on HashiCorp's learning platform. There are also additional guides to continue your learning.
Show off your Terraform knowledge by passing a certification exam. Visit the certification page for information about exams and find study materials on HashiCorp's learning platform.
Developing Terraform
This repository contains only Terraform core, which includes the command line interface and the main graph engine. Providers are implemented as plugins, and Terraform can automatically download providers that are published on the Terraform Registry. HashiCorp develops some providers, and others are developed by other organizations. For more information, see Extending Terraform.
To learn more about compiling Terraform and contributing suggested changes, please refer to the contributing guide.
To learn more about how we handle bug reports, please read the bug triage guide.