1075 lines
30 KiB
Go
1075 lines
30 KiB
Go
package cty
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"reflect"
|
|
|
|
"github.com/zclconf/go-cty/cty/set"
|
|
)
|
|
|
|
func (val Value) GoString() string {
|
|
if val == NilVal {
|
|
return "cty.NilVal"
|
|
}
|
|
|
|
if val.IsNull() {
|
|
return fmt.Sprintf("cty.NullVal(%#v)", val.ty)
|
|
}
|
|
if val == DynamicVal { // is unknown, so must be before the IsKnown check below
|
|
return "cty.DynamicVal"
|
|
}
|
|
if !val.IsKnown() {
|
|
return fmt.Sprintf("cty.UnknownVal(%#v)", val.ty)
|
|
}
|
|
|
|
// By the time we reach here we've dealt with all of the exceptions around
|
|
// unknowns and nulls, so we're guaranteed that the values are the
|
|
// canonical internal representation of the given type.
|
|
|
|
switch val.ty {
|
|
case Bool:
|
|
if val.v.(bool) {
|
|
return "cty.True"
|
|
} else {
|
|
return "cty.False"
|
|
}
|
|
case Number:
|
|
fv := val.v.(*big.Float)
|
|
// We'll try to use NumberIntVal or NumberFloatVal if we can, since
|
|
// the fully-general initializer call is pretty ugly-looking.
|
|
if fv.IsInt() {
|
|
return fmt.Sprintf("cty.NumberIntVal(%#v)", fv)
|
|
}
|
|
if rfv, accuracy := fv.Float64(); accuracy == big.Exact {
|
|
return fmt.Sprintf("cty.NumberFloatVal(%#v)", rfv)
|
|
}
|
|
return fmt.Sprintf("cty.NumberVal(new(big.Float).Parse(\"%#v\", 10))", fv)
|
|
case String:
|
|
return fmt.Sprintf("cty.StringVal(%#v)", val.v)
|
|
}
|
|
|
|
switch {
|
|
case val.ty.IsSetType():
|
|
vals := val.v.(set.Set).Values()
|
|
if vals == nil || len(vals) == 0 {
|
|
return fmt.Sprintf("cty.SetValEmpty()")
|
|
} else {
|
|
return fmt.Sprintf("cty.SetVal(%#v)", vals)
|
|
}
|
|
case val.ty.IsCapsuleType():
|
|
return fmt.Sprintf("cty.CapsuleVal(%#v, %#v)", val.ty, val.v)
|
|
}
|
|
|
|
// Default exposes implementation details, so should actually cover
|
|
// all of the cases above for good caller UX.
|
|
return fmt.Sprintf("cty.Value{ty: %#v, v: %#v}", val.ty, val.v)
|
|
}
|
|
|
|
// Equals returns True if the receiver and the given other value have the
|
|
// same type and are exactly equal in value.
|
|
//
|
|
// The usual short-circuit rules apply, so the result can be unknown or typed
|
|
// as dynamic if either of the given values are. Use RawEquals to compare
|
|
// if two values are equal *ignoring* the short-circuit rules.
|
|
func (val Value) Equals(other Value) Value {
|
|
if val.ty.HasDynamicTypes() || other.ty.HasDynamicTypes() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
|
|
if !val.ty.Equals(other.ty) {
|
|
return BoolVal(false)
|
|
}
|
|
|
|
if !(val.IsKnown() && other.IsKnown()) {
|
|
return UnknownVal(Bool)
|
|
}
|
|
|
|
if val.IsNull() || other.IsNull() {
|
|
if val.IsNull() && other.IsNull() {
|
|
return BoolVal(true)
|
|
}
|
|
return BoolVal(false)
|
|
}
|
|
|
|
ty := val.ty
|
|
result := false
|
|
|
|
switch {
|
|
case ty == Number:
|
|
result = val.v.(*big.Float).Cmp(other.v.(*big.Float)) == 0
|
|
case ty == Bool:
|
|
result = val.v.(bool) == other.v.(bool)
|
|
case ty == String:
|
|
// Simple equality is safe because we NFC-normalize strings as they
|
|
// enter our world from StringVal, and so we can assume strings are
|
|
// always in normal form.
|
|
result = val.v.(string) == other.v.(string)
|
|
case ty.IsObjectType():
|
|
oty := ty.typeImpl.(typeObject)
|
|
result = true
|
|
for attr, aty := range oty.AttrTypes {
|
|
lhs := Value{
|
|
ty: aty,
|
|
v: val.v.(map[string]interface{})[attr],
|
|
}
|
|
rhs := Value{
|
|
ty: aty,
|
|
v: other.v.(map[string]interface{})[attr],
|
|
}
|
|
eq := lhs.Equals(rhs)
|
|
if !eq.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
if eq.False() {
|
|
result = false
|
|
break
|
|
}
|
|
}
|
|
case ty.IsTupleType():
|
|
tty := ty.typeImpl.(typeTuple)
|
|
result = true
|
|
for i, ety := range tty.ElemTypes {
|
|
lhs := Value{
|
|
ty: ety,
|
|
v: val.v.([]interface{})[i],
|
|
}
|
|
rhs := Value{
|
|
ty: ety,
|
|
v: other.v.([]interface{})[i],
|
|
}
|
|
eq := lhs.Equals(rhs)
|
|
if !eq.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
if eq.False() {
|
|
result = false
|
|
break
|
|
}
|
|
}
|
|
case ty.IsListType():
|
|
ety := ty.typeImpl.(typeList).ElementTypeT
|
|
if len(val.v.([]interface{})) == len(other.v.([]interface{})) {
|
|
result = true
|
|
for i := range val.v.([]interface{}) {
|
|
lhs := Value{
|
|
ty: ety,
|
|
v: val.v.([]interface{})[i],
|
|
}
|
|
rhs := Value{
|
|
ty: ety,
|
|
v: other.v.([]interface{})[i],
|
|
}
|
|
eq := lhs.Equals(rhs)
|
|
if !eq.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
if eq.False() {
|
|
result = false
|
|
break
|
|
}
|
|
}
|
|
}
|
|
case ty.IsSetType():
|
|
s1 := val.v.(set.Set)
|
|
s2 := other.v.(set.Set)
|
|
equal := true
|
|
|
|
// Note that by our definition of sets it's never possible for two
|
|
// sets that contain unknown values (directly or indicrectly) to
|
|
// ever be equal, even if they are otherwise identical.
|
|
|
|
// FIXME: iterating both lists and checking each item is not the
|
|
// ideal implementation here, but it works with the primitives we
|
|
// have in the set implementation. Perhaps the set implementation
|
|
// can provide its own equality test later.
|
|
s1.EachValue(func(v interface{}) {
|
|
if !s2.Has(v) {
|
|
equal = false
|
|
}
|
|
})
|
|
s2.EachValue(func(v interface{}) {
|
|
if !s1.Has(v) {
|
|
equal = false
|
|
}
|
|
})
|
|
|
|
result = equal
|
|
case ty.IsMapType():
|
|
ety := ty.typeImpl.(typeMap).ElementTypeT
|
|
if len(val.v.(map[string]interface{})) == len(other.v.(map[string]interface{})) {
|
|
result = true
|
|
for k := range val.v.(map[string]interface{}) {
|
|
if _, ok := other.v.(map[string]interface{})[k]; !ok {
|
|
result = false
|
|
break
|
|
}
|
|
lhs := Value{
|
|
ty: ety,
|
|
v: val.v.(map[string]interface{})[k],
|
|
}
|
|
rhs := Value{
|
|
ty: ety,
|
|
v: other.v.(map[string]interface{})[k],
|
|
}
|
|
eq := lhs.Equals(rhs)
|
|
if !eq.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
if eq.False() {
|
|
result = false
|
|
break
|
|
}
|
|
}
|
|
}
|
|
case ty.IsCapsuleType():
|
|
// A capsule type's encapsulated value is a pointer to a value of its
|
|
// native type, so we can just compare these to get the identity test
|
|
// we need.
|
|
return BoolVal(val.v == other.v)
|
|
|
|
default:
|
|
// should never happen
|
|
panic(fmt.Errorf("unsupported value type %#v in Equals", ty))
|
|
}
|
|
|
|
return BoolVal(result)
|
|
}
|
|
|
|
// NotEqual is a shorthand for Equals followed by Not.
|
|
func (val Value) NotEqual(other Value) Value {
|
|
return val.Equals(other).Not()
|
|
}
|
|
|
|
// True returns true if the receiver is True, false if False, and panics if
|
|
// the receiver is not of type Bool.
|
|
//
|
|
// This is a helper function to help write application logic that works with
|
|
// values, rather than a first-class operation. It does not work with unknown
|
|
// or null values. For more robust handling with unknown value
|
|
// short-circuiting, use val.Equals(cty.True).
|
|
func (val Value) True() bool {
|
|
if val.ty != Bool {
|
|
panic("not bool")
|
|
}
|
|
return val.Equals(True).v.(bool)
|
|
}
|
|
|
|
// False is the opposite of True.
|
|
func (val Value) False() bool {
|
|
return !val.True()
|
|
}
|
|
|
|
// RawEquals returns true if and only if the two given values have the same
|
|
// type and equal value, ignoring the usual short-circuit rules about
|
|
// unknowns and dynamic types.
|
|
//
|
|
// This method is more appropriate for testing than for real use, since it
|
|
// skips over usual semantics around unknowns but as a consequence allows
|
|
// testing the result of another operation that is expected to return unknown.
|
|
// It returns a primitive Go bool rather than a Value to remind us that it
|
|
// is not a first-class value operation.
|
|
func (val Value) RawEquals(other Value) bool {
|
|
if !val.ty.Equals(other.ty) {
|
|
return false
|
|
}
|
|
if (!val.IsKnown()) && (!other.IsKnown()) {
|
|
return true
|
|
}
|
|
if (val.IsKnown() && !other.IsKnown()) || (other.IsKnown() && !val.IsKnown()) {
|
|
return false
|
|
}
|
|
if val.IsNull() && other.IsNull() {
|
|
return true
|
|
}
|
|
if (val.IsNull() && !other.IsNull()) || (other.IsNull() && !val.IsNull()) {
|
|
return false
|
|
}
|
|
if val.ty == DynamicPseudoType && other.ty == DynamicPseudoType {
|
|
return true
|
|
}
|
|
|
|
ty := val.ty
|
|
switch {
|
|
case ty == Number || ty == Bool || ty == String || ty == DynamicPseudoType:
|
|
return val.Equals(other).True()
|
|
case ty.IsObjectType():
|
|
oty := ty.typeImpl.(typeObject)
|
|
for attr, aty := range oty.AttrTypes {
|
|
lhs := Value{
|
|
ty: aty,
|
|
v: val.v.(map[string]interface{})[attr],
|
|
}
|
|
rhs := Value{
|
|
ty: aty,
|
|
v: other.v.(map[string]interface{})[attr],
|
|
}
|
|
eq := lhs.RawEquals(rhs)
|
|
if !eq {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
case ty.IsTupleType():
|
|
tty := ty.typeImpl.(typeTuple)
|
|
for i, ety := range tty.ElemTypes {
|
|
lhs := Value{
|
|
ty: ety,
|
|
v: val.v.([]interface{})[i],
|
|
}
|
|
rhs := Value{
|
|
ty: ety,
|
|
v: other.v.([]interface{})[i],
|
|
}
|
|
eq := lhs.RawEquals(rhs)
|
|
if !eq {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
case ty.IsListType():
|
|
ety := ty.typeImpl.(typeList).ElementTypeT
|
|
if len(val.v.([]interface{})) == len(other.v.([]interface{})) {
|
|
for i := range val.v.([]interface{}) {
|
|
lhs := Value{
|
|
ty: ety,
|
|
v: val.v.([]interface{})[i],
|
|
}
|
|
rhs := Value{
|
|
ty: ety,
|
|
v: other.v.([]interface{})[i],
|
|
}
|
|
eq := lhs.RawEquals(rhs)
|
|
if !eq {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
return false
|
|
case ty.IsSetType():
|
|
s1 := val.v.(set.Set)
|
|
s2 := other.v.(set.Set)
|
|
|
|
// Since we're intentionally ignoring our rule that two unknowns
|
|
// are never equal, we can cheat here.
|
|
// (This isn't 100% right since e.g. it will fail if the set contains
|
|
// numbers that are infinite, which DeepEqual can't compare properly.
|
|
// We're accepting that limitation for simplicity here, since this
|
|
// function is here primarily for testing.)
|
|
return reflect.DeepEqual(s1, s2)
|
|
|
|
case ty.IsMapType():
|
|
ety := ty.typeImpl.(typeMap).ElementTypeT
|
|
if len(val.v.(map[string]interface{})) == len(other.v.(map[string]interface{})) {
|
|
for k := range val.v.(map[string]interface{}) {
|
|
if _, ok := other.v.(map[string]interface{})[k]; !ok {
|
|
return false
|
|
}
|
|
lhs := Value{
|
|
ty: ety,
|
|
v: val.v.(map[string]interface{})[k],
|
|
}
|
|
rhs := Value{
|
|
ty: ety,
|
|
v: other.v.(map[string]interface{})[k],
|
|
}
|
|
eq := lhs.RawEquals(rhs)
|
|
if !eq {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
return false
|
|
case ty.IsCapsuleType():
|
|
// A capsule type's encapsulated value is a pointer to a value of its
|
|
// native type, so we can just compare these to get the identity test
|
|
// we need.
|
|
return val.v == other.v
|
|
|
|
default:
|
|
// should never happen
|
|
panic(fmt.Errorf("unsupported value type %#v in RawEquals", ty))
|
|
}
|
|
}
|
|
|
|
// Add returns the sum of the receiver and the given other value. Both values
|
|
// must be numbers; this method will panic if not.
|
|
func (val Value) Add(other Value) Value {
|
|
if shortCircuit := mustTypeCheck(Number, Number, val, other); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Number)
|
|
return *shortCircuit
|
|
}
|
|
|
|
ret := new(big.Float)
|
|
ret.Add(val.v.(*big.Float), other.v.(*big.Float))
|
|
return NumberVal(ret)
|
|
}
|
|
|
|
// Subtract returns receiver minus the given other value. Both values must be
|
|
// numbers; this method will panic if not.
|
|
func (val Value) Subtract(other Value) Value {
|
|
if shortCircuit := mustTypeCheck(Number, Number, val, other); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Number)
|
|
return *shortCircuit
|
|
}
|
|
|
|
return val.Add(other.Negate())
|
|
}
|
|
|
|
// Negate returns the numeric negative of the receiver, which must be a number.
|
|
// This method will panic when given a value of any other type.
|
|
func (val Value) Negate() Value {
|
|
if shortCircuit := mustTypeCheck(Number, Number, val); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Number)
|
|
return *shortCircuit
|
|
}
|
|
|
|
ret := new(big.Float).Neg(val.v.(*big.Float))
|
|
return NumberVal(ret)
|
|
}
|
|
|
|
// Multiply returns the product of the receiver and the given other value.
|
|
// Both values must be numbers; this method will panic if not.
|
|
func (val Value) Multiply(other Value) Value {
|
|
if shortCircuit := mustTypeCheck(Number, Number, val, other); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Number)
|
|
return *shortCircuit
|
|
}
|
|
|
|
ret := new(big.Float)
|
|
ret.Mul(val.v.(*big.Float), other.v.(*big.Float))
|
|
return NumberVal(ret)
|
|
}
|
|
|
|
// Divide returns the quotient of the receiver and the given other value.
|
|
// Both values must be numbers; this method will panic if not.
|
|
//
|
|
// If the "other" value is exactly zero, this operation will return either
|
|
// PositiveInfinity or NegativeInfinity, depending on the sign of the
|
|
// receiver value. For some use-cases the presence of infinities may be
|
|
// undesirable, in which case the caller should check whether the
|
|
// other value equals zero before calling and raise an error instead.
|
|
//
|
|
// If both values are zero or infinity, this function will panic with
|
|
// an instance of big.ErrNaN.
|
|
func (val Value) Divide(other Value) Value {
|
|
if shortCircuit := mustTypeCheck(Number, Number, val, other); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Number)
|
|
return *shortCircuit
|
|
}
|
|
|
|
ret := new(big.Float)
|
|
ret.Quo(val.v.(*big.Float), other.v.(*big.Float))
|
|
return NumberVal(ret)
|
|
}
|
|
|
|
// Modulo returns the remainder of an integer division of the receiver and
|
|
// the given other value. Both values must be numbers; this method will panic
|
|
// if not.
|
|
//
|
|
// If the "other" value is exactly zero, this operation will return either
|
|
// PositiveInfinity or NegativeInfinity, depending on the sign of the
|
|
// receiver value. For some use-cases the presence of infinities may be
|
|
// undesirable, in which case the caller should check whether the
|
|
// other value equals zero before calling and raise an error instead.
|
|
//
|
|
// This operation is primarily here for use with nonzero natural numbers.
|
|
// Modulo with "other" as a non-natural number gets somewhat philosophical,
|
|
// and this function takes a position on what that should mean, but callers
|
|
// may wish to disallow such things outright or implement their own modulo
|
|
// if they disagree with the interpretation used here.
|
|
func (val Value) Modulo(other Value) Value {
|
|
if shortCircuit := mustTypeCheck(Number, Number, val, other); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Number)
|
|
return *shortCircuit
|
|
}
|
|
|
|
// We cheat a bit here with infinities, just abusing the Multiply operation
|
|
// to get an infinite result of the correct sign.
|
|
if val == PositiveInfinity || val == NegativeInfinity || other == PositiveInfinity || other == NegativeInfinity {
|
|
return val.Multiply(other)
|
|
}
|
|
|
|
if other.RawEquals(Zero) {
|
|
return val
|
|
}
|
|
|
|
// FIXME: This is a bit clumsy. Should come back later and see if there's a
|
|
// more straightforward way to do this.
|
|
rat := val.Divide(other)
|
|
ratFloorInt := &big.Int{}
|
|
rat.v.(*big.Float).Int(ratFloorInt)
|
|
work := (&big.Float{}).SetInt(ratFloorInt)
|
|
work.Mul(other.v.(*big.Float), work)
|
|
work.Sub(val.v.(*big.Float), work)
|
|
|
|
return NumberVal(work)
|
|
}
|
|
|
|
// Absolute returns the absolute (signless) value of the receiver, which must
|
|
// be a number or this method will panic.
|
|
func (val Value) Absolute() Value {
|
|
if shortCircuit := mustTypeCheck(Number, Number, val); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Number)
|
|
return *shortCircuit
|
|
}
|
|
|
|
ret := (&big.Float{}).Abs(val.v.(*big.Float))
|
|
return NumberVal(ret)
|
|
}
|
|
|
|
// GetAttr returns the value of the given attribute of the receiver, which
|
|
// must be of an object type that has an attribute of the given name.
|
|
// This method will panic if the receiver type is not compatible.
|
|
//
|
|
// The method will also panic if the given attribute name is not defined
|
|
// for the value's type. Use the attribute-related methods on Type to
|
|
// check for the validity of an attribute before trying to use it.
|
|
//
|
|
// This method may be called on a value whose type is DynamicPseudoType,
|
|
// in which case the result will also be DynamicVal.
|
|
func (val Value) GetAttr(name string) Value {
|
|
if val.ty == DynamicPseudoType {
|
|
return DynamicVal
|
|
}
|
|
|
|
if !val.ty.IsObjectType() {
|
|
panic("value is not an object")
|
|
}
|
|
|
|
name = NormalizeString(name)
|
|
if !val.ty.HasAttribute(name) {
|
|
panic("value has no attribute of that name")
|
|
}
|
|
|
|
attrType := val.ty.AttributeType(name)
|
|
|
|
if !val.IsKnown() {
|
|
return UnknownVal(attrType)
|
|
}
|
|
|
|
return Value{
|
|
ty: attrType,
|
|
v: val.v.(map[string]interface{})[name],
|
|
}
|
|
}
|
|
|
|
// Index returns the value of an element of the receiver, which must have
|
|
// either a list, map or tuple type. This method will panic if the receiver
|
|
// type is not compatible.
|
|
//
|
|
// The key value must be the correct type for the receving collection: a
|
|
// number if the collection is a list or tuple, or a string if it is a map.
|
|
// In the case of a list or tuple, the given number must be convertable to int
|
|
// or this method will panic. The key may alternatively be of
|
|
// DynamicPseudoType, in which case the result itself is an unknown of the
|
|
// collection's element type.
|
|
//
|
|
// The result is of the receiver collection's element type, or in the case
|
|
// of a tuple the type of the specific element index requested.
|
|
//
|
|
// This method may be called on a value whose type is DynamicPseudoType,
|
|
// in which case the result will also be the DynamicValue.
|
|
func (val Value) Index(key Value) Value {
|
|
if val.ty == DynamicPseudoType {
|
|
return DynamicVal
|
|
}
|
|
|
|
switch {
|
|
case val.Type().IsListType():
|
|
elty := val.Type().ElementType()
|
|
if key.Type() == DynamicPseudoType {
|
|
return UnknownVal(elty)
|
|
}
|
|
|
|
if key.Type() != Number {
|
|
panic("element key for list must be number")
|
|
}
|
|
if !key.IsKnown() {
|
|
return UnknownVal(elty)
|
|
}
|
|
|
|
if !val.IsKnown() {
|
|
return UnknownVal(elty)
|
|
}
|
|
|
|
index, accuracy := key.v.(*big.Float).Int64()
|
|
if accuracy != big.Exact || index < 0 {
|
|
panic("element key for list must be non-negative integer")
|
|
}
|
|
|
|
return Value{
|
|
ty: elty,
|
|
v: val.v.([]interface{})[index],
|
|
}
|
|
case val.Type().IsMapType():
|
|
elty := val.Type().ElementType()
|
|
if key.Type() == DynamicPseudoType {
|
|
return UnknownVal(elty)
|
|
}
|
|
|
|
if key.Type() != String {
|
|
panic("element key for map must be string")
|
|
}
|
|
if !key.IsKnown() {
|
|
return UnknownVal(elty)
|
|
}
|
|
|
|
if !val.IsKnown() {
|
|
return UnknownVal(elty)
|
|
}
|
|
|
|
keyStr := key.v.(string)
|
|
|
|
return Value{
|
|
ty: elty,
|
|
v: val.v.(map[string]interface{})[keyStr],
|
|
}
|
|
case val.Type().IsTupleType():
|
|
if key.Type() == DynamicPseudoType {
|
|
return DynamicVal
|
|
}
|
|
|
|
if key.Type() != Number {
|
|
panic("element key for tuple must be number")
|
|
}
|
|
if !key.IsKnown() {
|
|
return DynamicVal
|
|
}
|
|
|
|
index, accuracy := key.v.(*big.Float).Int64()
|
|
if accuracy != big.Exact || index < 0 {
|
|
panic("element key for list must be non-negative integer")
|
|
}
|
|
|
|
eltys := val.Type().TupleElementTypes()
|
|
|
|
if !val.IsKnown() {
|
|
return UnknownVal(eltys[index])
|
|
}
|
|
|
|
return Value{
|
|
ty: eltys[index],
|
|
v: val.v.([]interface{})[index],
|
|
}
|
|
default:
|
|
panic("not a list, map, or tuple type")
|
|
}
|
|
}
|
|
|
|
// HasIndex returns True if the receiver (which must be supported for Index)
|
|
// has an element with the given index key, or False if it does not.
|
|
//
|
|
// The result will be UnknownVal(Bool) if either the collection or the
|
|
// key value are unknown.
|
|
//
|
|
// This method will panic if the receiver is not indexable, but does not
|
|
// impose any panic-causing type constraints on the key.
|
|
func (val Value) HasIndex(key Value) Value {
|
|
if val.ty == DynamicPseudoType {
|
|
return UnknownVal(Bool)
|
|
}
|
|
|
|
switch {
|
|
case val.Type().IsListType():
|
|
if key.Type() == DynamicPseudoType {
|
|
return UnknownVal(Bool)
|
|
}
|
|
|
|
if key.Type() != Number {
|
|
return False
|
|
}
|
|
if !key.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
if !val.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
|
|
index, accuracy := key.v.(*big.Float).Int64()
|
|
if accuracy != big.Exact || index < 0 {
|
|
return False
|
|
}
|
|
|
|
return BoolVal(int(index) < len(val.v.([]interface{})) && index >= 0)
|
|
case val.Type().IsMapType():
|
|
if key.Type() == DynamicPseudoType {
|
|
return UnknownVal(Bool)
|
|
}
|
|
|
|
if key.Type() != String {
|
|
return False
|
|
}
|
|
if !key.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
if !val.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
|
|
keyStr := key.v.(string)
|
|
_, exists := val.v.(map[string]interface{})[keyStr]
|
|
|
|
return BoolVal(exists)
|
|
case val.Type().IsTupleType():
|
|
if key.Type() == DynamicPseudoType {
|
|
return UnknownVal(Bool)
|
|
}
|
|
|
|
if key.Type() != Number {
|
|
return False
|
|
}
|
|
if !key.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
|
|
index, accuracy := key.v.(*big.Float).Int64()
|
|
if accuracy != big.Exact || index < 0 {
|
|
return False
|
|
}
|
|
|
|
length := val.Type().Length()
|
|
return BoolVal(int(index) < length && index >= 0)
|
|
default:
|
|
panic("not a list, map, or tuple type")
|
|
}
|
|
}
|
|
|
|
// HasElement returns True if the receiver (which must be of a set type)
|
|
// has the given value as an element, or False if it does not.
|
|
//
|
|
// The result will be UnknownVal(Bool) if either the set or the
|
|
// given value are unknown.
|
|
//
|
|
// This method will panic if the receiver is not a set, or if it is a null set.
|
|
func (val Value) HasElement(elem Value) Value {
|
|
ty := val.Type()
|
|
|
|
if !ty.IsSetType() {
|
|
panic("not a set type")
|
|
}
|
|
if !val.IsKnown() || !elem.IsKnown() {
|
|
return UnknownVal(Bool)
|
|
}
|
|
if val.IsNull() {
|
|
panic("can't call HasElement on a nil value")
|
|
}
|
|
if !ty.ElementType().Equals(elem.Type()) {
|
|
return False
|
|
}
|
|
|
|
s := val.v.(set.Set)
|
|
return BoolVal(s.Has(elem.v))
|
|
}
|
|
|
|
// Length returns the length of the receiver, which must be a collection type
|
|
// or tuple type, as a number value. If the receiver is not a compatible type
|
|
// then this method will panic.
|
|
//
|
|
// If the receiver is unknown then the result is also unknown.
|
|
//
|
|
// If the receiver is null then this function will panic.
|
|
//
|
|
// Note that Length is not supported for strings. To determine the length
|
|
// of a string, call AsString and take the length of the native Go string
|
|
// that is returned.
|
|
func (val Value) Length() Value {
|
|
if val.Type().IsTupleType() {
|
|
// For tuples, we can return the length even if the value is not known.
|
|
return NumberIntVal(int64(val.Type().Length()))
|
|
}
|
|
|
|
if !val.IsKnown() {
|
|
return UnknownVal(Number)
|
|
}
|
|
|
|
return NumberIntVal(int64(val.LengthInt()))
|
|
}
|
|
|
|
// LengthInt is like Length except it returns an int. It has the same behavior
|
|
// as Length except that it will panic if the receiver is unknown.
|
|
//
|
|
// This is an integration method provided for the convenience of code bridging
|
|
// into Go's type system.
|
|
func (val Value) LengthInt() int {
|
|
if val.Type().IsTupleType() {
|
|
// For tuples, we can return the length even if the value is not known.
|
|
return val.Type().Length()
|
|
}
|
|
if val.Type().IsObjectType() {
|
|
// For objects, the length is the number of attributes associated with the type.
|
|
return len(val.Type().AttributeTypes())
|
|
}
|
|
if !val.IsKnown() {
|
|
panic("value is not known")
|
|
}
|
|
if val.IsNull() {
|
|
panic("value is null")
|
|
}
|
|
|
|
switch {
|
|
|
|
case val.ty.IsListType():
|
|
return len(val.v.([]interface{}))
|
|
|
|
case val.ty.IsSetType():
|
|
return val.v.(set.Set).Length()
|
|
|
|
case val.ty.IsMapType():
|
|
return len(val.v.(map[string]interface{}))
|
|
|
|
default:
|
|
panic("value is not a collection")
|
|
}
|
|
}
|
|
|
|
// ElementIterator returns an ElementIterator for iterating the elements
|
|
// of the receiver, which must be a collection type, a tuple type, or an object
|
|
// type. If called on a method of any other type, this method will panic.
|
|
//
|
|
// The value must be Known and non-Null, or this method will panic.
|
|
//
|
|
// If the receiver is of a list type, the returned keys will be of type Number
|
|
// and the values will be of the list's element type.
|
|
//
|
|
// If the receiver is of a map type, the returned keys will be of type String
|
|
// and the value will be of the map's element type. Elements are passed in
|
|
// ascending lexicographical order by key.
|
|
//
|
|
// If the receiver is of a set type, each element is returned as both the
|
|
// key and the value, since set members are their own identity.
|
|
//
|
|
// If the receiver is of a tuple type, the returned keys will be of type Number
|
|
// and the value will be of the corresponding element's type.
|
|
//
|
|
// If the receiver is of an object type, the returned keys will be of type
|
|
// String and the value will be of the corresponding attributes's type.
|
|
//
|
|
// ElementIterator is an integration method, so it cannot handle Unknown
|
|
// values. This method will panic if the receiver is Unknown.
|
|
func (val Value) ElementIterator() ElementIterator {
|
|
if !val.IsKnown() {
|
|
panic("can't use ElementIterator on unknown value")
|
|
}
|
|
if val.IsNull() {
|
|
panic("can't use ElementIterator on null value")
|
|
}
|
|
return elementIterator(val)
|
|
}
|
|
|
|
// CanIterateElements returns true if the receiver can support the
|
|
// ElementIterator method (and by extension, ForEachElement) without panic.
|
|
func (val Value) CanIterateElements() bool {
|
|
return canElementIterator(val)
|
|
}
|
|
|
|
// ForEachElement executes a given callback function for each element of
|
|
// the receiver, which must be a collection type or tuple type, or this method
|
|
// will panic.
|
|
//
|
|
// ForEachElement uses ElementIterator internally, and so the values passed
|
|
// to the callback are as described for ElementIterator.
|
|
//
|
|
// Returns true if the iteration exited early due to the callback function
|
|
// returning true, or false if the loop ran to completion.
|
|
//
|
|
// ForEachElement is an integration method, so it cannot handle Unknown
|
|
// values. This method will panic if the receiver is Unknown.
|
|
func (val Value) ForEachElement(cb ElementCallback) bool {
|
|
it := val.ElementIterator()
|
|
for it.Next() {
|
|
key, val := it.Element()
|
|
stop := cb(key, val)
|
|
if stop {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Not returns the logical inverse of the receiver, which must be of type
|
|
// Bool or this method will panic.
|
|
func (val Value) Not() Value {
|
|
if shortCircuit := mustTypeCheck(Bool, Bool, val); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Bool)
|
|
return *shortCircuit
|
|
}
|
|
|
|
return BoolVal(!val.v.(bool))
|
|
}
|
|
|
|
// And returns the result of logical AND with the receiver and the other given
|
|
// value, which must both be of type Bool or this method will panic.
|
|
func (val Value) And(other Value) Value {
|
|
if shortCircuit := mustTypeCheck(Bool, Bool, val, other); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Bool)
|
|
return *shortCircuit
|
|
}
|
|
|
|
return BoolVal(val.v.(bool) && other.v.(bool))
|
|
}
|
|
|
|
// Or returns the result of logical OR with the receiver and the other given
|
|
// value, which must both be of type Bool or this method will panic.
|
|
func (val Value) Or(other Value) Value {
|
|
if shortCircuit := mustTypeCheck(Bool, Bool, val, other); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Bool)
|
|
return *shortCircuit
|
|
}
|
|
|
|
return BoolVal(val.v.(bool) || other.v.(bool))
|
|
}
|
|
|
|
// LessThan returns True if the receiver is less than the other given value,
|
|
// which must both be numbers or this method will panic.
|
|
func (val Value) LessThan(other Value) Value {
|
|
if shortCircuit := mustTypeCheck(Number, Bool, val, other); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Bool)
|
|
return *shortCircuit
|
|
}
|
|
|
|
return BoolVal(val.v.(*big.Float).Cmp(other.v.(*big.Float)) < 0)
|
|
}
|
|
|
|
// GreaterThan returns True if the receiver is greater than the other given
|
|
// value, which must both be numbers or this method will panic.
|
|
func (val Value) GreaterThan(other Value) Value {
|
|
if shortCircuit := mustTypeCheck(Number, Bool, val, other); shortCircuit != nil {
|
|
shortCircuit = forceShortCircuitType(shortCircuit, Bool)
|
|
return *shortCircuit
|
|
}
|
|
|
|
return BoolVal(val.v.(*big.Float).Cmp(other.v.(*big.Float)) > 0)
|
|
}
|
|
|
|
// LessThanOrEqualTo is equivalent to LessThan and Equal combined with Or.
|
|
func (val Value) LessThanOrEqualTo(other Value) Value {
|
|
return val.LessThan(other).Or(val.Equals(other))
|
|
}
|
|
|
|
// GreaterThanOrEqualTo is equivalent to GreaterThan and Equal combined with Or.
|
|
func (val Value) GreaterThanOrEqualTo(other Value) Value {
|
|
return val.GreaterThan(other).Or(val.Equals(other))
|
|
}
|
|
|
|
// AsString returns the native string from a non-null, non-unknown cty.String
|
|
// value, or panics if called on any other value.
|
|
func (val Value) AsString() string {
|
|
if val.ty != String {
|
|
panic("not a string")
|
|
}
|
|
if val.IsNull() {
|
|
panic("value is null")
|
|
}
|
|
if !val.IsKnown() {
|
|
panic("value is unknown")
|
|
}
|
|
|
|
return val.v.(string)
|
|
}
|
|
|
|
// AsBigFloat returns a big.Float representation of a non-null, non-unknown
|
|
// cty.Number value, or panics if called on any other value.
|
|
//
|
|
// For more convenient conversions to other native numeric types, use the
|
|
// "gocty" package.
|
|
func (val Value) AsBigFloat() *big.Float {
|
|
if val.ty != Number {
|
|
panic("not a number")
|
|
}
|
|
if val.IsNull() {
|
|
panic("value is null")
|
|
}
|
|
if !val.IsKnown() {
|
|
panic("value is unknown")
|
|
}
|
|
|
|
// Copy the float so that callers can't mutate our internal state
|
|
ret := *(val.v.(*big.Float))
|
|
|
|
return &ret
|
|
}
|
|
|
|
// AsValueSlice returns a []cty.Value representation of a non-null, non-unknown
|
|
// value of any type that CanIterateElements, or panics if called on
|
|
// any other value.
|
|
//
|
|
// For more convenient conversions to slices of more specific types, use
|
|
// the "gocty" package.
|
|
func (val Value) AsValueSlice() []Value {
|
|
l := val.LengthInt()
|
|
if l == 0 {
|
|
return nil
|
|
}
|
|
|
|
ret := make([]Value, 0, l)
|
|
for it := val.ElementIterator(); it.Next(); {
|
|
_, v := it.Element()
|
|
ret = append(ret, v)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// AsValueMap returns a map[string]cty.Value representation of a non-null,
|
|
// non-unknown value of any type that CanIterateElements, or panics if called
|
|
// on any other value.
|
|
//
|
|
// For more convenient conversions to maps of more specific types, use
|
|
// the "gocty" package.
|
|
func (val Value) AsValueMap() map[string]Value {
|
|
l := val.LengthInt()
|
|
if l == 0 {
|
|
return nil
|
|
}
|
|
|
|
ret := make(map[string]Value, l)
|
|
for it := val.ElementIterator(); it.Next(); {
|
|
k, v := it.Element()
|
|
ret[k.AsString()] = v
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// AsValueSet returns a ValueSet representation of a non-null,
|
|
// non-unknown value of any collection type, or panics if called
|
|
// on any other value.
|
|
//
|
|
// Unlike AsValueSlice and AsValueMap, this method requires specifically a
|
|
// collection type (list, set or map) and does not allow structural types
|
|
// (tuple or object), because the ValueSet type requires homogenous
|
|
// element types.
|
|
//
|
|
// The returned ValueSet can store only values of the receiver's element type.
|
|
func (val Value) AsValueSet() ValueSet {
|
|
if !val.Type().IsCollectionType() {
|
|
panic("not a collection type")
|
|
}
|
|
|
|
// We don't give the caller our own set.Set (assuming we're a cty.Set value)
|
|
// because then the caller could mutate our internals, which is forbidden.
|
|
// Instead, we will construct a new set and append our elements into it.
|
|
ret := NewValueSet(val.Type().ElementType())
|
|
for it := val.ElementIterator(); it.Next(); {
|
|
_, v := it.Element()
|
|
ret.Add(v)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// EncapsulatedValue returns the native value encapsulated in a non-null,
|
|
// non-unknown capsule-typed value, or panics if called on any other value.
|
|
//
|
|
// The result is the same pointer that was passed to CapsuleVal to create
|
|
// the value. Since cty considers values to be immutable, it is strongly
|
|
// recommended to treat the encapsulated value itself as immutable too.
|
|
func (val Value) EncapsulatedValue() interface{} {
|
|
if !val.Type().IsCapsuleType() {
|
|
panic("not a capsule-typed value")
|
|
}
|
|
|
|
return val.v
|
|
}
|