package command import ( "bytes" "fmt" "io" "io/ioutil" "log" "os" "os/exec" "path/filepath" "strings" "github.com/hashicorp/hcl/v2" "github.com/hashicorp/hcl/v2/hclsyntax" "github.com/hashicorp/hcl/v2/hclwrite" "github.com/mitchellh/cli" "github.com/hashicorp/terraform/configs" "github.com/hashicorp/terraform/tfdiags" ) const ( stdinArg = "-" ) // FmtCommand is a Command implementation that rewrites Terraform config // files to a canonical format and style. type FmtCommand struct { Meta list bool write bool diff bool check bool recursive bool input io.Reader // STDIN if nil } func (c *FmtCommand) Run(args []string) int { if c.input == nil { c.input = os.Stdin } args = c.Meta.process(args) cmdFlags := c.Meta.defaultFlagSet("fmt") cmdFlags.BoolVar(&c.list, "list", true, "list") cmdFlags.BoolVar(&c.write, "write", true, "write") cmdFlags.BoolVar(&c.diff, "diff", false, "diff") cmdFlags.BoolVar(&c.check, "check", false, "check") cmdFlags.BoolVar(&c.recursive, "recursive", false, "recursive") cmdFlags.Usage = func() { c.Ui.Error(c.Help()) } if err := cmdFlags.Parse(args); err != nil { c.Ui.Error(fmt.Sprintf("Error parsing command-line flags: %s\n", err.Error())) return 1 } args = cmdFlags.Args() if len(args) > 1 { c.Ui.Error("The fmt command expects at most one argument.") cmdFlags.Usage() return 1 } var paths []string if len(args) == 0 { paths = []string{"."} } else if args[0] == stdinArg { c.list = false c.write = false } else { paths = []string{args[0]} } var output io.Writer list := c.list // preserve the original value of -list if c.check { // set to true so we can use the list output to check // if the input needs formatting c.list = true c.write = false output = &bytes.Buffer{} } else { output = &cli.UiWriter{Ui: c.Ui} } diags := c.fmt(paths, c.input, output) c.showDiagnostics(diags) if diags.HasErrors() { return 2 } if c.check { buf := output.(*bytes.Buffer) ok := buf.Len() == 0 if list { io.Copy(&cli.UiWriter{Ui: c.Ui}, buf) } if ok { return 0 } else { return 3 } } return 0 } func (c *FmtCommand) fmt(paths []string, stdin io.Reader, stdout io.Writer) tfdiags.Diagnostics { var diags tfdiags.Diagnostics if len(paths) == 0 { // Assuming stdin, then. if c.write { diags = diags.Append(fmt.Errorf("Option -write cannot be used when reading from stdin")) return diags } fileDiags := c.processFile("", stdin, stdout, true) diags = diags.Append(fileDiags) return diags } for _, path := range paths { path = c.normalizePath(path) info, err := os.Stat(path) if err != nil { diags = diags.Append(fmt.Errorf("No file or directory at %s", path)) return diags } if info.IsDir() { dirDiags := c.processDir(path, stdout) diags = diags.Append(dirDiags) } else { switch filepath.Ext(path) { case ".tf", ".tfvars": f, err := os.Open(path) if err != nil { // Open does not produce error messages that are end-user-appropriate, // so we'll need to simplify here. diags = diags.Append(fmt.Errorf("Failed to read file %s", path)) continue } fileDiags := c.processFile(c.normalizePath(path), f, stdout, false) diags = diags.Append(fileDiags) f.Close() default: diags = diags.Append(fmt.Errorf("Only .tf and .tfvars files can be processed with terraform fmt")) continue } } } return diags } func (c *FmtCommand) processFile(path string, r io.Reader, w io.Writer, isStdout bool) tfdiags.Diagnostics { var diags tfdiags.Diagnostics log.Printf("[TRACE] terraform fmt: Formatting %s", path) src, err := ioutil.ReadAll(r) if err != nil { diags = diags.Append(fmt.Errorf("Failed to read %s", path)) return diags } // Register this path as a synthetic configuration source, so that any // diagnostic errors can include the source code snippet c.registerSynthConfigSource(path, src) // File must be parseable as HCL native syntax before we'll try to format // it. If not, the formatter is likely to make drastic changes that would // be hard for the user to undo. _, syntaxDiags := hclsyntax.ParseConfig(src, path, hcl.Pos{Line: 1, Column: 1}) if syntaxDiags.HasErrors() { diags = diags.Append(syntaxDiags) return diags } result := c.formatSourceCode(src, path) if !bytes.Equal(src, result) { // Something was changed if c.list { fmt.Fprintln(w, path) } if c.write { err := ioutil.WriteFile(path, result, 0644) if err != nil { diags = diags.Append(fmt.Errorf("Failed to write %s", path)) return diags } } if c.diff { diff, err := bytesDiff(src, result, path) if err != nil { diags = diags.Append(fmt.Errorf("Failed to generate diff for %s: %s", path, err)) return diags } w.Write(diff) } } if !c.list && !c.write && !c.diff { _, err = w.Write(result) if err != nil { diags = diags.Append(fmt.Errorf("Failed to write result")) } } return diags } func (c *FmtCommand) processDir(path string, stdout io.Writer) tfdiags.Diagnostics { var diags tfdiags.Diagnostics log.Printf("[TRACE] terraform fmt: looking for files in %s", path) entries, err := ioutil.ReadDir(path) if err != nil { switch { case os.IsNotExist(err): diags = diags.Append(fmt.Errorf("There is no configuration directory at %s", path)) default: // ReadDir does not produce error messages that are end-user-appropriate, // so we'll need to simplify here. diags = diags.Append(fmt.Errorf("Cannot read directory %s", path)) } return diags } for _, info := range entries { name := info.Name() if configs.IsIgnoredFile(name) { continue } subPath := filepath.Join(path, name) if info.IsDir() { if c.recursive { subDiags := c.processDir(subPath, stdout) diags = diags.Append(subDiags) } // We do not recurse into child directories by default because we // want to mimic the file-reading behavior of "terraform plan", etc, // operating on one module at a time. continue } ext := filepath.Ext(name) switch ext { case ".tf", ".tfvars": f, err := os.Open(subPath) if err != nil { // Open does not produce error messages that are end-user-appropriate, // so we'll need to simplify here. diags = diags.Append(fmt.Errorf("Failed to read file %s", subPath)) continue } fileDiags := c.processFile(c.normalizePath(subPath), f, stdout, false) diags = diags.Append(fileDiags) f.Close() } } return diags } // formatSourceCode is the formatting logic itself, applied to each file that // is selected (directly or indirectly) on the command line. func (c *FmtCommand) formatSourceCode(src []byte, filename string) []byte { f, diags := hclwrite.ParseConfig(src, filename, hcl.InitialPos) if diags.HasErrors() { // It would be weird to get here because the caller should already have // checked for syntax errors and returned them. We'll just do nothing // in this case, returning the input exactly as given. return src } c.formatBody(f.Body(), nil) return f.Bytes() } func (c *FmtCommand) formatBody(body *hclwrite.Body, inBlocks []string) { attrs := body.Attributes() for name, attr := range attrs { if len(inBlocks) == 1 && inBlocks[0] == "variable" && name == "type" { cleanedExprTokens := c.formatTypeExpr(attr.Expr().BuildTokens(nil)) body.SetAttributeRaw(name, cleanedExprTokens) continue } cleanedExprTokens := c.formatValueExpr(attr.Expr().BuildTokens(nil)) body.SetAttributeRaw(name, cleanedExprTokens) } blocks := body.Blocks() for _, block := range blocks { // Normalize the label formatting, removing any weird stuff like // interleaved inline comments and using the idiomatic quoted // label syntax. block.SetLabels(block.Labels()) inBlocks := append(inBlocks, block.Type()) c.formatBody(block.Body(), inBlocks) } } func (c *FmtCommand) formatValueExpr(tokens hclwrite.Tokens) hclwrite.Tokens { if len(tokens) < 5 { // Can't possibly be a "${ ... }" sequence without at least enough // tokens for the delimiters and one token inside them. return tokens } oQuote := tokens[0] oBrace := tokens[1] cBrace := tokens[len(tokens)-2] cQuote := tokens[len(tokens)-1] if oQuote.Type != hclsyntax.TokenOQuote || oBrace.Type != hclsyntax.TokenTemplateInterp || cBrace.Type != hclsyntax.TokenTemplateSeqEnd || cQuote.Type != hclsyntax.TokenCQuote { // Not an interpolation sequence at all, then. return tokens } inside := tokens[2 : len(tokens)-2] // We're only interested in sequences that are provable to be single // interpolation sequences, which we'll determine by hunting inside // the interior tokens for any other interpolation sequences. This is // likely to produce false negatives sometimes, but that's better than // false positives and we're mainly interested in catching the easy cases // here. quotes := 0 for _, token := range inside { if token.Type == hclsyntax.TokenOQuote { quotes++ continue } if token.Type == hclsyntax.TokenCQuote { quotes-- continue } if quotes > 0 { // Interpolation sequences inside nested quotes are okay, because // they are part of a nested expression. // "${foo("${bar}")}" continue } if token.Type == hclsyntax.TokenTemplateInterp || token.Type == hclsyntax.TokenTemplateSeqEnd { // We've found another template delimiter within our interior // tokens, which suggests that we've found something like this: // "${foo}${bar}" // That isn't unwrappable, so we'll leave the whole expression alone. return tokens } if token.Type == hclsyntax.TokenQuotedLit { // If there's any literal characters in the outermost // quoted sequence then it is not unwrappable. return tokens } } // If we got down here without an early return then this looks like // an unwrappable sequence, but we'll trim any leading and trailing // newlines that might result in an invalid result if we were to // naively trim something like this: // "${ // foo // }" trimmed := c.trimNewlines(inside) // Finally, we check if the unwrapped expression is on multiple lines. If // so, we ensure that it is surrounded by parenthesis to make sure that it // parses correctly after unwrapping. This may be redundant in some cases, // but is required for at least multi-line ternary expressions. isMultiLine := false hasLeadingParen := false hasTrailingParen := false for i, token := range trimmed { switch { case i == 0 && token.Type == hclsyntax.TokenOParen: hasLeadingParen = true case token.Type == hclsyntax.TokenNewline: isMultiLine = true case i == len(trimmed)-1 && token.Type == hclsyntax.TokenCParen: hasTrailingParen = true } } if isMultiLine && !(hasLeadingParen && hasTrailingParen) { wrapped := make(hclwrite.Tokens, 0, len(trimmed)+2) wrapped = append(wrapped, &hclwrite.Token{ Type: hclsyntax.TokenOParen, Bytes: []byte("("), }) wrapped = append(wrapped, trimmed...) wrapped = append(wrapped, &hclwrite.Token{ Type: hclsyntax.TokenCParen, Bytes: []byte(")"), }) return wrapped } return trimmed } func (c *FmtCommand) formatTypeExpr(tokens hclwrite.Tokens) hclwrite.Tokens { switch len(tokens) { case 1: kwTok := tokens[0] if kwTok.Type != hclsyntax.TokenIdent { // Not a single type keyword, then. return tokens } // Collection types without an explicit element type mean // the element type is "any", so we'll normalize that. switch string(kwTok.Bytes) { case "list", "map", "set": return hclwrite.Tokens{ kwTok, { Type: hclsyntax.TokenOParen, Bytes: []byte("("), }, { Type: hclsyntax.TokenIdent, Bytes: []byte("any"), }, { Type: hclsyntax.TokenCParen, Bytes: []byte(")"), }, } default: return tokens } case 3: // A pre-0.12 legacy quoted string type, like "string". oQuote := tokens[0] strTok := tokens[1] cQuote := tokens[2] if oQuote.Type != hclsyntax.TokenOQuote || strTok.Type != hclsyntax.TokenQuotedLit || cQuote.Type != hclsyntax.TokenCQuote { // Not a quoted string sequence, then. return tokens } // Because this quoted syntax is from Terraform 0.11 and // earlier, which didn't have the idea of "any" as an, // element type, we use string as the default element // type. That will avoid oddities if somehow the configuration // was relying on numeric values being auto-converted to // string, as 0.11 would do. This mimicks what terraform // 0.12upgrade used to do, because we'd found real-world // modules that were depending on the auto-stringing.) switch string(strTok.Bytes) { case "string": return hclwrite.Tokens{ { Type: hclsyntax.TokenIdent, Bytes: []byte("string"), }, } case "list": return hclwrite.Tokens{ { Type: hclsyntax.TokenIdent, Bytes: []byte("list"), }, { Type: hclsyntax.TokenOParen, Bytes: []byte("("), }, { Type: hclsyntax.TokenIdent, Bytes: []byte("string"), }, { Type: hclsyntax.TokenCParen, Bytes: []byte(")"), }, } case "map": return hclwrite.Tokens{ { Type: hclsyntax.TokenIdent, Bytes: []byte("map"), }, { Type: hclsyntax.TokenOParen, Bytes: []byte("("), }, { Type: hclsyntax.TokenIdent, Bytes: []byte("string"), }, { Type: hclsyntax.TokenCParen, Bytes: []byte(")"), }, } default: // Something else we're not expecting, then. return tokens } default: return tokens } } func (c *FmtCommand) trimNewlines(tokens hclwrite.Tokens) hclwrite.Tokens { if len(tokens) == 0 { return nil } var start, end int for start = 0; start < len(tokens); start++ { if tokens[start].Type != hclsyntax.TokenNewline { break } } for end = len(tokens); end > 0; end-- { if tokens[end-1].Type != hclsyntax.TokenNewline { break } } return tokens[start:end] } func (c *FmtCommand) Help() string { helpText := ` Usage: terraform [global options] fmt [options] [DIR] Rewrites all Terraform configuration files to a canonical format. Both configuration files (.tf) and variables files (.tfvars) are updated. JSON files (.tf.json or .tfvars.json) are not modified. If DIR is not specified then the current working directory will be used. If DIR is "-" then content will be read from STDIN. The given content must be in the Terraform language native syntax; JSON is not supported. Options: -list=false Don't list files whose formatting differs (always disabled if using STDIN) -write=false Don't write to source files (always disabled if using STDIN or -check) -diff Display diffs of formatting changes -check Check if the input is formatted. Exit status will be 0 if all input is properly formatted and non-zero otherwise. -no-color If specified, output won't contain any color. -recursive Also process files in subdirectories. By default, only the given directory (or current directory) is processed. ` return strings.TrimSpace(helpText) } func (c *FmtCommand) Synopsis() string { return "Reformat your configuration in the standard style" } func bytesDiff(b1, b2 []byte, path string) (data []byte, err error) { f1, err := ioutil.TempFile("", "") if err != nil { return } defer os.Remove(f1.Name()) defer f1.Close() f2, err := ioutil.TempFile("", "") if err != nil { return } defer os.Remove(f2.Name()) defer f2.Close() f1.Write(b1) f2.Write(b2) data, err = exec.Command("diff", "--label=old/"+path, "--label=new/"+path, "-u", f1.Name(), f2.Name()).CombinedOutput() if len(data) > 0 { // diff exits with a non-zero status when the files don't match. // Ignore that failure as long as we get output. err = nil } return }