package json import ( "bufio" "bytes" "fmt" "sort" "strings" "github.com/hashicorp/hcl/v2" "github.com/hashicorp/hcl/v2/hcled" "github.com/hashicorp/hcl/v2/hclparse" "github.com/hashicorp/terraform/internal/lang/marks" "github.com/hashicorp/terraform/internal/tfdiags" "github.com/zclconf/go-cty/cty" ) // These severities map to the tfdiags.Severity values, plus an explicit // unknown in case that enum grows without us noticing here. const ( DiagnosticSeverityUnknown = "unknown" DiagnosticSeverityError = "error" DiagnosticSeverityWarning = "warning" ) // Diagnostic represents any tfdiags.Diagnostic value. The simplest form has // just a severity, single line summary, and optional detail. If there is more // information about the source of the diagnostic, this is represented in the // range field. type Diagnostic struct { Severity string `json:"severity"` Summary string `json:"summary"` Detail string `json:"detail"` Address string `json:"address,omitempty"` Range *DiagnosticRange `json:"range,omitempty"` Snippet *DiagnosticSnippet `json:"snippet,omitempty"` } // Pos represents a position in the source code. type Pos struct { // Line is a one-based count for the line in the indicated file. Line int `json:"line"` // Column is a one-based count of Unicode characters from the start of the line. Column int `json:"column"` // Byte is a zero-based offset into the indicated file. Byte int `json:"byte"` } // DiagnosticRange represents the filename and position of the diagnostic // subject. This defines the range of the source to be highlighted in the // output. Note that the snippet may include additional surrounding source code // if the diagnostic has a context range. // // The Start position is inclusive, and the End position is exclusive. Exact // positions are intended for highlighting for human interpretation only and // are subject to change. type DiagnosticRange struct { Filename string `json:"filename"` Start Pos `json:"start"` End Pos `json:"end"` } // DiagnosticSnippet represents source code information about the diagnostic. // It is possible for a diagnostic to have a source (and therefore a range) but // no source code can be found. In this case, the range field will be present and // the snippet field will not. type DiagnosticSnippet struct { // Context is derived from HCL's hcled.ContextString output. This gives a // high-level summary of the root context of the diagnostic: for example, // the resource block in which an expression causes an error. Context *string `json:"context"` // Code is a possibly-multi-line string of Terraform configuration, which // includes both the diagnostic source and any relevant context as defined // by the diagnostic. Code string `json:"code"` // StartLine is the line number in the source file for the first line of // the snippet code block. This is not necessarily the same as the value of // Range.Start.Line, as it is possible to have zero or more lines of // context source code before the diagnostic range starts. StartLine int `json:"start_line"` // HighlightStartOffset is the character offset into Code at which the // diagnostic source range starts, which ought to be highlighted as such by // the consumer of this data. HighlightStartOffset int `json:"highlight_start_offset"` // HighlightEndOffset is the character offset into Code at which the // diagnostic source range ends. HighlightEndOffset int `json:"highlight_end_offset"` // Values is a sorted slice of expression values which may be useful in // understanding the source of an error in a complex expression. Values []DiagnosticExpressionValue `json:"values"` } // DiagnosticExpressionValue represents an HCL traversal string (e.g. // "var.foo") and a statement about its value while the expression was // evaluated (e.g. "is a string", "will be known only after apply"). These are // intended to help the consumer diagnose why an expression caused a diagnostic // to be emitted. type DiagnosticExpressionValue struct { Traversal string `json:"traversal"` Statement string `json:"statement"` } // NewDiagnostic takes a tfdiags.Diagnostic and a map of configuration sources, // and returns a Diagnostic struct. func NewDiagnostic(diag tfdiags.Diagnostic, sources map[string][]byte) *Diagnostic { var sev string switch diag.Severity() { case tfdiags.Error: sev = DiagnosticSeverityError case tfdiags.Warning: sev = DiagnosticSeverityWarning default: sev = DiagnosticSeverityUnknown } desc := diag.Description() diagnostic := &Diagnostic{ Severity: sev, Summary: desc.Summary, Detail: desc.Detail, Address: desc.Address, } sourceRefs := diag.Source() if sourceRefs.Subject != nil { // We'll borrow HCL's range implementation here, because it has some // handy features to help us produce a nice source code snippet. highlightRange := sourceRefs.Subject.ToHCL() // Some diagnostic sources fail to set the end of the subject range. if highlightRange.End == (hcl.Pos{}) { highlightRange.End = highlightRange.Start } snippetRange := highlightRange if sourceRefs.Context != nil { snippetRange = sourceRefs.Context.ToHCL() } // Make sure the snippet includes the highlight. This should be true // for any reasonable diagnostic, but we'll make sure. snippetRange = hcl.RangeOver(snippetRange, highlightRange) // Empty ranges result in odd diagnostic output, so extend the end to // ensure there's at least one byte in the snippet or highlight. if snippetRange.Empty() { snippetRange.End.Byte++ snippetRange.End.Column++ } if highlightRange.Empty() { highlightRange.End.Byte++ highlightRange.End.Column++ } diagnostic.Range = &DiagnosticRange{ Filename: highlightRange.Filename, Start: Pos{ Line: highlightRange.Start.Line, Column: highlightRange.Start.Column, Byte: highlightRange.Start.Byte, }, End: Pos{ Line: highlightRange.End.Line, Column: highlightRange.End.Column, Byte: highlightRange.End.Byte, }, } var src []byte if sources != nil { src = sources[highlightRange.Filename] } // If we have a source file for the diagnostic, we can emit a code // snippet. if src != nil { diagnostic.Snippet = &DiagnosticSnippet{ StartLine: snippetRange.Start.Line, // Ensure that the default Values struct is an empty array, as this // makes consuming the JSON structure easier in most languages. Values: []DiagnosticExpressionValue{}, } file, offset := parseRange(src, highlightRange) // Some diagnostics may have a useful top-level context to add to // the code snippet output. contextStr := hcled.ContextString(file, offset-1) if contextStr != "" { diagnostic.Snippet.Context = &contextStr } // Build the string of the code snippet, tracking at which byte of // the file the snippet starts. var codeStartByte int sc := hcl.NewRangeScanner(src, highlightRange.Filename, bufio.ScanLines) var code strings.Builder for sc.Scan() { lineRange := sc.Range() if lineRange.Overlaps(snippetRange) { if codeStartByte == 0 && code.Len() == 0 { codeStartByte = lineRange.Start.Byte } code.Write(lineRange.SliceBytes(src)) code.WriteRune('\n') } } codeStr := strings.TrimSuffix(code.String(), "\n") diagnostic.Snippet.Code = codeStr // Calculate the start and end byte of the highlight range relative // to the code snippet string. start := highlightRange.Start.Byte - codeStartByte end := start + (highlightRange.End.Byte - highlightRange.Start.Byte) // We can end up with some quirky results here in edge cases like // when a source range starts or ends at a newline character, // so we'll cap the results at the bounds of the highlight range // so that consumers of this data don't need to contend with // out-of-bounds errors themselves. if start < 0 { start = 0 } else if start > len(codeStr) { start = len(codeStr) } if end < 0 { end = 0 } else if end > len(codeStr) { end = len(codeStr) } diagnostic.Snippet.HighlightStartOffset = start diagnostic.Snippet.HighlightEndOffset = end if fromExpr := diag.FromExpr(); fromExpr != nil { // We may also be able to generate information about the dynamic // values of relevant variables at the point of evaluation, then. // This is particularly useful for expressions that get evaluated // multiple times with different values, such as blocks using // "count" and "for_each", or within "for" expressions. expr := fromExpr.Expression ctx := fromExpr.EvalContext vars := expr.Variables() values := make([]DiagnosticExpressionValue, 0, len(vars)) seen := make(map[string]struct{}, len(vars)) Traversals: for _, traversal := range vars { for len(traversal) > 1 { val, diags := traversal.TraverseAbs(ctx) if diags.HasErrors() { // Skip anything that generates errors, since we probably // already have the same error in our diagnostics set // already. traversal = traversal[:len(traversal)-1] continue } traversalStr := traversalStr(traversal) if _, exists := seen[traversalStr]; exists { continue Traversals // don't show duplicates when the same variable is referenced multiple times } value := DiagnosticExpressionValue{ Traversal: traversalStr, } switch { case val.HasMark(marks.Sensitive): // We won't say anything at all about sensitive values, // because we might give away something that was // sensitive about them. value.Statement = "has a sensitive value" case !val.IsKnown(): if ty := val.Type(); ty != cty.DynamicPseudoType { value.Statement = fmt.Sprintf("is a %s, known only after apply", ty.FriendlyName()) } else { value.Statement = "will be known only after apply" } default: value.Statement = fmt.Sprintf("is %s", compactValueStr(val)) } values = append(values, value) seen[traversalStr] = struct{}{} } } sort.Slice(values, func(i, j int) bool { return values[i].Traversal < values[j].Traversal }) diagnostic.Snippet.Values = values } } } return diagnostic } func parseRange(src []byte, rng hcl.Range) (*hcl.File, int) { filename := rng.Filename offset := rng.Start.Byte // We need to re-parse here to get a *hcl.File we can interrogate. This // is not awesome since we presumably already parsed the file earlier too, // but this re-parsing is architecturally simpler than retaining all of // the hcl.File objects and we only do this in the case of an error anyway // so the overhead here is not a big problem. parser := hclparse.NewParser() var file *hcl.File // Ignore diagnostics here as there is nothing we can do with them. if strings.HasSuffix(filename, ".json") { file, _ = parser.ParseJSON(src, filename) } else { file, _ = parser.ParseHCL(src, filename) } return file, offset } // compactValueStr produces a compact, single-line summary of a given value // that is suitable for display in the UI. // // For primitives it returns a full representation, while for more complex // types it instead summarizes the type, size, etc to produce something // that is hopefully still somewhat useful but not as verbose as a rendering // of the entire data structure. func compactValueStr(val cty.Value) string { // This is a specialized subset of value rendering tailored to producing // helpful but concise messages in diagnostics. It is not comprehensive // nor intended to be used for other purposes. if val.HasMark(marks.Sensitive) { // We check this in here just to make sure, but note that the caller // of compactValueStr ought to have already checked this and skipped // calling into compactValueStr anyway, so this shouldn't actually // be reachable. return "(sensitive value)" } // WARNING: We've only checked that the value isn't sensitive _shallowly_ // here, and so we must never show any element values from complex types // in here. However, it's fine to show map keys and attribute names because // those are never sensitive in isolation: the entire value would be // sensitive in that case. ty := val.Type() switch { case val.IsNull(): return "null" case !val.IsKnown(): // Should never happen here because we should filter before we get // in here, but we'll do something reasonable rather than panic. return "(not yet known)" case ty == cty.Bool: if val.True() { return "true" } return "false" case ty == cty.Number: bf := val.AsBigFloat() return bf.Text('g', 10) case ty == cty.String: // Go string syntax is not exactly the same as HCL native string syntax, // but we'll accept the minor edge-cases where this is different here // for now, just to get something reasonable here. return fmt.Sprintf("%q", val.AsString()) case ty.IsCollectionType() || ty.IsTupleType(): l := val.LengthInt() switch l { case 0: return "empty " + ty.FriendlyName() case 1: return ty.FriendlyName() + " with 1 element" default: return fmt.Sprintf("%s with %d elements", ty.FriendlyName(), l) } case ty.IsObjectType(): atys := ty.AttributeTypes() l := len(atys) switch l { case 0: return "object with no attributes" case 1: var name string for k := range atys { name = k } return fmt.Sprintf("object with 1 attribute %q", name) default: return fmt.Sprintf("object with %d attributes", l) } default: return ty.FriendlyName() } } // traversalStr produces a representation of an HCL traversal that is compact, // resembles HCL native syntax, and is suitable for display in the UI. func traversalStr(traversal hcl.Traversal) string { // This is a specialized subset of traversal rendering tailored to // producing helpful contextual messages in diagnostics. It is not // comprehensive nor intended to be used for other purposes. var buf bytes.Buffer for _, step := range traversal { switch tStep := step.(type) { case hcl.TraverseRoot: buf.WriteString(tStep.Name) case hcl.TraverseAttr: buf.WriteByte('.') buf.WriteString(tStep.Name) case hcl.TraverseIndex: buf.WriteByte('[') if keyTy := tStep.Key.Type(); keyTy.IsPrimitiveType() { buf.WriteString(compactValueStr(tStep.Key)) } else { // We'll just use a placeholder for more complex values, // since otherwise our result could grow ridiculously long. buf.WriteString("...") } buf.WriteByte(']') } } return buf.String() }