package terraform import ( "fmt" "log" "runtime/debug" "strings" "github.com/hashicorp/terraform/dag" ) // RootModuleName is the name given to the root module implicitly. const RootModuleName = "root" // RootModulePath is the path for the root module. var RootModulePath = []string{RootModuleName} // Graph represents the graph that Terraform uses to represent resources // and their dependencies. type Graph struct { // Graph is the actual DAG. This is embedded so you can call the DAG // methods directly. dag.AcyclicGraph // Path is the path in the module tree that this Graph represents. // The root is represented by a single element list containing // RootModuleName Path []string // debugName is a name for reference in the debug output. This is usually // to indicate what topmost builder was, and if this graph is a shadow or // not. debugName string } func (g *Graph) DirectedGraph() dag.Grapher { return &g.AcyclicGraph } // Walk walks the graph with the given walker for callbacks. The graph // will be walked with full parallelism, so the walker should expect // to be called in concurrently. func (g *Graph) Walk(walker GraphWalker) error { return g.walk(walker) } func (g *Graph) walk(walker GraphWalker) error { // The callbacks for enter/exiting a graph ctx := walker.EnterPath(g.Path) defer walker.ExitPath(g.Path) // Get the path for logs path := strings.Join(ctx.Path(), ".") // Determine if our walker is a panic wrapper panicwrap, ok := walker.(GraphWalkerPanicwrapper) if !ok { panicwrap = nil // just to be sure } debugName := "walk-graph.json" if g.debugName != "" { debugName = g.debugName + "-" + debugName } debugBuf := dbug.NewFileWriter(debugName) g.SetDebugWriter(debugBuf) defer debugBuf.Close() // Walk the graph. var walkFn dag.WalkFunc walkFn = func(v dag.Vertex) (rerr error) { log.Printf("[DEBUG] vertex '%s.%s': walking", path, dag.VertexName(v)) g.DebugVisitInfo(v, g.debugName) // If we have a panic wrap GraphWalker and a panic occurs, recover // and call that. We ensure the return value is an error, however, // so that future nodes are not called. defer func() { // If no panicwrap, do nothing if panicwrap == nil { return } // If no panic, do nothing err := recover() if err == nil { return } // Modify the return value to show the error rerr = fmt.Errorf("vertex %q captured panic: %s\n\n%s", dag.VertexName(v), err, debug.Stack()) // Call the panic wrapper panicwrap.Panic(v, err) }() walker.EnterVertex(v) defer walker.ExitVertex(v, rerr) // vertexCtx is the context that we use when evaluating. This // is normally the context of our graph but can be overridden // with a GraphNodeSubPath impl. vertexCtx := ctx if pn, ok := v.(GraphNodeSubPath); ok && len(pn.Path()) > 0 { vertexCtx = walker.EnterPath(normalizeModulePath(pn.Path())) defer walker.ExitPath(pn.Path()) } // If the node is eval-able, then evaluate it. if ev, ok := v.(GraphNodeEvalable); ok { tree := ev.EvalTree() if tree == nil { panic(fmt.Sprintf( "%s.%s (%T): nil eval tree", path, dag.VertexName(v), v)) } // Allow the walker to change our tree if needed. Eval, // then callback with the output. log.Printf("[DEBUG] vertex '%s.%s': evaluating", path, dag.VertexName(v)) g.DebugVertexInfo(v, fmt.Sprintf("evaluating %T(%s)", v, path)) tree = walker.EnterEvalTree(v, tree) output, err := Eval(tree, vertexCtx) if rerr = walker.ExitEvalTree(v, output, err); rerr != nil { return } } // If the node is dynamically expanded, then expand it if ev, ok := v.(GraphNodeDynamicExpandable); ok { log.Printf( "[DEBUG] vertex '%s.%s': expanding/walking dynamic subgraph", path, dag.VertexName(v)) g.DebugVertexInfo(v, fmt.Sprintf("expanding %T(%s)", v, path)) g, err := ev.DynamicExpand(vertexCtx) if err != nil { rerr = err return } if g != nil { // Walk the subgraph if rerr = g.walk(walker); rerr != nil { return } } } // If the node has a subgraph, then walk the subgraph if sn, ok := v.(GraphNodeSubgraph); ok { log.Printf( "[DEBUG] vertex '%s.%s': walking subgraph", path, dag.VertexName(v)) g.DebugVertexInfo(v, fmt.Sprintf("subgraph: %T(%s)", v, path)) if rerr = sn.Subgraph().(*Graph).walk(walker); rerr != nil { return } } return nil } return g.AcyclicGraph.Walk(walkFn) }