package format import ( "bufio" "bytes" "fmt" "sort" "strings" "github.com/mitchellh/colorstring" "github.com/zclconf/go-cty/cty" ctyjson "github.com/zclconf/go-cty/cty/json" "github.com/hashicorp/terraform/addrs" "github.com/hashicorp/terraform/configs/configschema" "github.com/hashicorp/terraform/plans" "github.com/hashicorp/terraform/plans/objchange" "github.com/hashicorp/terraform/states" ) // ResourceChange returns a string representation of a change to a particular // resource, for inclusion in user-facing plan output. // // The resource schema must be provided along with the change so that the // formatted change can reflect the configuration structure for the associated // resource. // // If "color" is non-nil, it will be used to color the result. Otherwise, // no color codes will be included. func ResourceChange( change *plans.ResourceInstanceChangeSrc, tainted bool, schema *configschema.Block, color *colorstring.Colorize, ) string { addr := change.Addr var buf bytes.Buffer if color == nil { color = &colorstring.Colorize{ Colors: colorstring.DefaultColors, Disable: true, Reset: false, } } dispAddr := addr.String() if change.DeposedKey != states.NotDeposed { dispAddr = fmt.Sprintf("%s (deposed object %s)", dispAddr, change.DeposedKey) } switch change.Action { case plans.Create: buf.WriteString(color.Color(fmt.Sprintf("[bold] # %s[reset] will be created", dispAddr))) case plans.Read: buf.WriteString(color.Color(fmt.Sprintf("[bold] # %s[reset] will be read during apply\n # (config refers to values not yet known)", dispAddr))) case plans.Update: buf.WriteString(color.Color(fmt.Sprintf("[bold] # %s[reset] will be updated in-place", dispAddr))) case plans.CreateThenDelete, plans.DeleteThenCreate: if tainted { buf.WriteString(color.Color(fmt.Sprintf("[bold] # %s[reset] is tainted, so must be [bold][red]replaced", dispAddr))) } else { buf.WriteString(color.Color(fmt.Sprintf("[bold] # %s[reset] must be [bold][red]replaced", dispAddr))) } case plans.Delete: buf.WriteString(color.Color(fmt.Sprintf("[bold] # %s[reset] will be [bold][red]destroyed", dispAddr))) default: // should never happen, since the above is exhaustive buf.WriteString(fmt.Sprintf("%s has an action the plan renderer doesn't support (this is a bug)", dispAddr)) } buf.WriteString(color.Color("[reset]\n")) switch change.Action { case plans.Create: buf.WriteString(color.Color("[green] +[reset] ")) case plans.Read: buf.WriteString(color.Color("[cyan] <=[reset] ")) case plans.Update: buf.WriteString(color.Color("[yellow] ~[reset] ")) case plans.DeleteThenCreate: buf.WriteString(color.Color("[red]-[reset]/[green]+[reset] ")) case plans.CreateThenDelete: buf.WriteString(color.Color("[green]+[reset]/[red]-[reset] ")) case plans.Delete: buf.WriteString(color.Color("[red] -[reset] ")) default: buf.WriteString(color.Color("??? ")) } switch addr.Resource.Resource.Mode { case addrs.ManagedResourceMode: buf.WriteString(fmt.Sprintf( "resource %q %q", addr.Resource.Resource.Type, addr.Resource.Resource.Name, )) case addrs.DataResourceMode: buf.WriteString(fmt.Sprintf( "data %q %q ", addr.Resource.Resource.Type, addr.Resource.Resource.Name, )) default: // should never happen, since the above is exhaustive buf.WriteString(addr.String()) } buf.WriteString(" {") p := blockBodyDiffPrinter{ buf: &buf, color: color, action: change.Action, requiredReplace: change.RequiredReplace, } // Most commonly-used resources have nested blocks that result in us // going at least three traversals deep while we recurse here, so we'll // start with that much capacity and then grow as needed for deeper // structures. path := make(cty.Path, 0, 3) changeV, err := change.Decode(schema.ImpliedType()) if err != nil { // Should never happen in here, since we've already been through // loads of layers of encode/decode of the planned changes before now. panic(fmt.Sprintf("failed to decode plan for %s while rendering diff: %s", addr, err)) } // We currently have an opt-out that permits the legacy SDK to return values // that defy our usual conventions around handling of nesting blocks. To // avoid the rendering code from needing to handle all of these, we'll // normalize first. // (Ideally we'd do this as part of the SDK opt-out implementation in core, // but we've added it here for now to reduce risk of unexpected impacts // on other code in core.) changeV.Change.Before = objchange.NormalizeObjectFromLegacySDK(changeV.Change.Before, schema) changeV.Change.After = objchange.NormalizeObjectFromLegacySDK(changeV.Change.After, schema) bodyWritten := p.writeBlockBodyDiff(schema, changeV.Before, changeV.After, 6, path) if bodyWritten { buf.WriteString("\n") buf.WriteString(strings.Repeat(" ", 4)) } buf.WriteString("}\n") return buf.String() } type blockBodyDiffPrinter struct { buf *bytes.Buffer color *colorstring.Colorize action plans.Action requiredReplace cty.PathSet } const forcesNewResourceCaption = " [red]# forces replacement[reset]" // writeBlockBodyDiff writes attribute or block differences // and returns true if any differences were found and written func (p *blockBodyDiffPrinter) writeBlockBodyDiff(schema *configschema.Block, old, new cty.Value, indent int, path cty.Path) bool { path = ctyEnsurePathCapacity(path, 1) bodyWritten := false blankBeforeBlocks := false { attrNames := make([]string, 0, len(schema.Attributes)) attrNameLen := 0 for name := range schema.Attributes { oldVal := ctyGetAttrMaybeNull(old, name) newVal := ctyGetAttrMaybeNull(new, name) if oldVal.IsNull() && newVal.IsNull() { // Skip attributes where both old and new values are null // (we do this early here so that we'll do our value alignment // based on the longest attribute name that has a change, rather // than the longest attribute name in the full set.) continue } attrNames = append(attrNames, name) if len(name) > attrNameLen { attrNameLen = len(name) } } sort.Strings(attrNames) if len(attrNames) > 0 { blankBeforeBlocks = true } for _, name := range attrNames { attrS := schema.Attributes[name] oldVal := ctyGetAttrMaybeNull(old, name) newVal := ctyGetAttrMaybeNull(new, name) bodyWritten = true p.writeAttrDiff(name, attrS, oldVal, newVal, attrNameLen, indent, path) } } { blockTypeNames := make([]string, 0, len(schema.BlockTypes)) for name := range schema.BlockTypes { blockTypeNames = append(blockTypeNames, name) } sort.Strings(blockTypeNames) for _, name := range blockTypeNames { blockS := schema.BlockTypes[name] oldVal := ctyGetAttrMaybeNull(old, name) newVal := ctyGetAttrMaybeNull(new, name) bodyWritten = true p.writeNestedBlockDiffs(name, blockS, oldVal, newVal, blankBeforeBlocks, indent, path) // Always include a blank for any subsequent block types. blankBeforeBlocks = true } } return bodyWritten } func (p *blockBodyDiffPrinter) writeAttrDiff(name string, attrS *configschema.Attribute, old, new cty.Value, nameLen, indent int, path cty.Path) { path = append(path, cty.GetAttrStep{Name: name}) p.buf.WriteString("\n") p.buf.WriteString(strings.Repeat(" ", indent)) showJustNew := false var action plans.Action switch { case old.IsNull(): action = plans.Create showJustNew = true case new.IsNull(): action = plans.Delete case ctyEqualWithUnknown(old, new): action = plans.NoOp showJustNew = true default: action = plans.Update } p.writeActionSymbol(action) p.buf.WriteString(p.color.Color("[bold]")) p.buf.WriteString(name) p.buf.WriteString(p.color.Color("[reset]")) p.buf.WriteString(strings.Repeat(" ", nameLen-len(name))) p.buf.WriteString(" = ") if attrS.Sensitive { p.buf.WriteString("(sensitive value)") } else { switch { case showJustNew: p.writeValue(new, action, indent+2) default: // We show new even if it is null to emphasize the fact // that it is being unset, since otherwise it is easy to // misunderstand that the value is still set to the old value. p.writeValueDiff(old, new, indent+2, path) } } } func (p *blockBodyDiffPrinter) writeNestedBlockDiffs(name string, blockS *configschema.NestedBlock, old, new cty.Value, blankBefore bool, indent int, path cty.Path) { path = append(path, cty.GetAttrStep{Name: name}) if old.IsNull() && new.IsNull() { // Nothing to do if both old and new is null return } // Where old/new are collections representing a nesting mode other than // NestingSingle, we assume the collection value can never be unknown // since we always produce the container for the nested objects, even if // the objects within are computed. switch blockS.Nesting { case configschema.NestingSingle: var action plans.Action switch { case old.IsNull(): action = plans.Create case new.IsNull(): action = plans.Delete case !new.IsKnown() || !old.IsKnown(): // "old" should actually always be known due to our contract // that old values must never be unknown, but we'll allow it // anyway to be robust. action = plans.Update case !(new.Equals(old).True()): action = plans.Update } if blankBefore { p.buf.WriteRune('\n') } p.writeNestedBlockDiff(name, nil, &blockS.Block, action, old, new, indent, path) case configschema.NestingList: // For the sake of handling nested blocks, we'll treat a null list // the same as an empty list since the config language doesn't // distinguish these anyway. old = ctyNullBlockListAsEmpty(old) new = ctyNullBlockListAsEmpty(new) oldItems := ctyCollectionValues(old) newItems := ctyCollectionValues(new) // Here we intentionally preserve the index-based correspondance // between old and new, rather than trying to detect insertions // and removals in the list, because this more accurately reflects // how Terraform Core and providers will understand the change, // particularly when the nested block contains computed attributes // that will themselves maintain correspondance by index. // commonLen is number of elements that exist in both lists, which // will be presented as updates (~). Any additional items in one // of the lists will be presented as either creates (+) or deletes (-) // depending on which list they belong to. var commonLen int switch { case len(oldItems) < len(newItems): commonLen = len(oldItems) default: commonLen = len(newItems) } if blankBefore && (len(oldItems) > 0 || len(newItems) > 0) { p.buf.WriteRune('\n') } for i := 0; i < commonLen; i++ { path := append(path, cty.IndexStep{Key: cty.NumberIntVal(int64(i))}) oldItem := oldItems[i] newItem := newItems[i] action := plans.Update if oldItem.RawEquals(newItem) { action = plans.NoOp } p.writeNestedBlockDiff(name, nil, &blockS.Block, action, oldItem, newItem, indent, path) } for i := commonLen; i < len(oldItems); i++ { path := append(path, cty.IndexStep{Key: cty.NumberIntVal(int64(i))}) oldItem := oldItems[i] newItem := cty.NullVal(oldItem.Type()) p.writeNestedBlockDiff(name, nil, &blockS.Block, plans.Delete, oldItem, newItem, indent, path) } for i := commonLen; i < len(newItems); i++ { path := append(path, cty.IndexStep{Key: cty.NumberIntVal(int64(i))}) newItem := newItems[i] oldItem := cty.NullVal(newItem.Type()) p.writeNestedBlockDiff(name, nil, &blockS.Block, plans.Create, oldItem, newItem, indent, path) } case configschema.NestingSet: // For the sake of handling nested blocks, we'll treat a null set // the same as an empty set since the config language doesn't // distinguish these anyway. old = ctyNullBlockSetAsEmpty(old) new = ctyNullBlockSetAsEmpty(new) oldItems := ctyCollectionValues(old) newItems := ctyCollectionValues(new) if (len(oldItems) + len(newItems)) == 0 { // Nothing to do if both sets are empty return } allItems := make([]cty.Value, 0, len(oldItems)+len(newItems)) allItems = append(allItems, oldItems...) allItems = append(allItems, newItems...) all := cty.SetVal(allItems) if blankBefore { p.buf.WriteRune('\n') } for it := all.ElementIterator(); it.Next(); { _, val := it.Element() var action plans.Action var oldValue, newValue cty.Value switch { case !val.IsKnown(): action = plans.Update newValue = val case !old.HasElement(val).True(): action = plans.Create oldValue = cty.NullVal(val.Type()) newValue = val case !new.HasElement(val).True(): action = plans.Delete oldValue = val newValue = cty.NullVal(val.Type()) default: action = plans.NoOp oldValue = val newValue = val } path := append(path, cty.IndexStep{Key: val}) p.writeNestedBlockDiff(name, nil, &blockS.Block, action, oldValue, newValue, indent, path) } case configschema.NestingMap: // For the sake of handling nested blocks, we'll treat a null map // the same as an empty map since the config language doesn't // distinguish these anyway. old = ctyNullBlockMapAsEmpty(old) new = ctyNullBlockMapAsEmpty(new) oldItems := old.AsValueMap() newItems := new.AsValueMap() if (len(oldItems) + len(newItems)) == 0 { // Nothing to do if both maps are empty return } allKeys := make(map[string]bool) for k := range oldItems { allKeys[k] = true } for k := range newItems { allKeys[k] = true } allKeysOrder := make([]string, 0, len(allKeys)) for k := range allKeys { allKeysOrder = append(allKeysOrder, k) } sort.Strings(allKeysOrder) if blankBefore { p.buf.WriteRune('\n') } for _, k := range allKeysOrder { var action plans.Action oldValue := oldItems[k] newValue := newItems[k] switch { case oldValue == cty.NilVal: oldValue = cty.NullVal(newValue.Type()) action = plans.Create case newValue == cty.NilVal: newValue = cty.NullVal(oldValue.Type()) action = plans.Delete case !newValue.RawEquals(oldValue): action = plans.Update default: action = plans.NoOp } path := append(path, cty.IndexStep{Key: cty.StringVal(k)}) p.writeNestedBlockDiff(name, &k, &blockS.Block, action, oldValue, newValue, indent, path) } } } func (p *blockBodyDiffPrinter) writeNestedBlockDiff(name string, label *string, blockS *configschema.Block, action plans.Action, old, new cty.Value, indent int, path cty.Path) { p.buf.WriteString("\n") p.buf.WriteString(strings.Repeat(" ", indent)) p.writeActionSymbol(action) if label != nil { fmt.Fprintf(p.buf, "%s %q {", name, *label) } else { fmt.Fprintf(p.buf, "%s {", name) } if action != plans.NoOp && (p.pathForcesNewResource(path) || p.pathForcesNewResource(path[:len(path)-1])) { p.buf.WriteString(p.color.Color(forcesNewResourceCaption)) } bodyWritten := p.writeBlockBodyDiff(blockS, old, new, indent+4, path) if bodyWritten { p.buf.WriteString("\n") p.buf.WriteString(strings.Repeat(" ", indent+2)) } p.buf.WriteString("}") } func (p *blockBodyDiffPrinter) writeValue(val cty.Value, action plans.Action, indent int) { if !val.IsKnown() { p.buf.WriteString("(known after apply)") return } if val.IsNull() { p.buf.WriteString(p.color.Color("[dark_gray]null[reset]")) return } ty := val.Type() switch { case ty.IsPrimitiveType(): switch ty { case cty.String: { // Special behavior for JSON strings containing array or object src := []byte(val.AsString()) ty, err := ctyjson.ImpliedType(src) // check for the special case of "null", which decodes to nil, // and just allow it to be printed out directly if err == nil && !ty.IsPrimitiveType() && val.AsString() != "null" { jv, err := ctyjson.Unmarshal(src, ty) if err == nil { p.buf.WriteString("jsonencode(") if jv.LengthInt() == 0 { p.writeValue(jv, action, 0) } else { p.buf.WriteByte('\n') p.buf.WriteString(strings.Repeat(" ", indent+4)) p.writeValue(jv, action, indent+4) p.buf.WriteByte('\n') p.buf.WriteString(strings.Repeat(" ", indent)) } p.buf.WriteByte(')') break // don't *also* do the normal behavior below } } } fmt.Fprintf(p.buf, "%q", val.AsString()) case cty.Bool: if val.True() { p.buf.WriteString("true") } else { p.buf.WriteString("false") } case cty.Number: bf := val.AsBigFloat() p.buf.WriteString(bf.Text('f', -1)) default: // should never happen, since the above is exhaustive fmt.Fprintf(p.buf, "%#v", val) } case ty.IsListType() || ty.IsSetType() || ty.IsTupleType(): p.buf.WriteString("[") it := val.ElementIterator() for it.Next() { _, val := it.Element() p.buf.WriteString("\n") p.buf.WriteString(strings.Repeat(" ", indent+2)) p.writeActionSymbol(action) p.writeValue(val, action, indent+4) p.buf.WriteString(",") } if val.LengthInt() > 0 { p.buf.WriteString("\n") p.buf.WriteString(strings.Repeat(" ", indent)) } p.buf.WriteString("]") case ty.IsMapType(): p.buf.WriteString("{") keyLen := 0 for it := val.ElementIterator(); it.Next(); { key, _ := it.Element() if keyStr := key.AsString(); len(keyStr) > keyLen { keyLen = len(keyStr) } } for it := val.ElementIterator(); it.Next(); { key, val := it.Element() p.buf.WriteString("\n") p.buf.WriteString(strings.Repeat(" ", indent+2)) p.writeActionSymbol(action) p.writeValue(key, action, indent+4) p.buf.WriteString(strings.Repeat(" ", keyLen-len(key.AsString()))) p.buf.WriteString(" = ") p.writeValue(val, action, indent+4) } if val.LengthInt() > 0 { p.buf.WriteString("\n") p.buf.WriteString(strings.Repeat(" ", indent)) } p.buf.WriteString("}") case ty.IsObjectType(): p.buf.WriteString("{") atys := ty.AttributeTypes() attrNames := make([]string, 0, len(atys)) nameLen := 0 for attrName := range atys { attrNames = append(attrNames, attrName) if len(attrName) > nameLen { nameLen = len(attrName) } } sort.Strings(attrNames) for _, attrName := range attrNames { val := val.GetAttr(attrName) p.buf.WriteString("\n") p.buf.WriteString(strings.Repeat(" ", indent+2)) p.writeActionSymbol(action) p.buf.WriteString(attrName) p.buf.WriteString(strings.Repeat(" ", nameLen-len(attrName))) p.buf.WriteString(" = ") p.writeValue(val, action, indent+4) } if len(attrNames) > 0 { p.buf.WriteString("\n") p.buf.WriteString(strings.Repeat(" ", indent)) } p.buf.WriteString("}") } } func (p *blockBodyDiffPrinter) writeValueDiff(old, new cty.Value, indent int, path cty.Path) { ty := old.Type() typesEqual := ctyTypesEqual(ty, new.Type()) // We have some specialized diff implementations for certain complex // values where it's useful to see a visualization of the diff of // the nested elements rather than just showing the entire old and // new values verbatim. // However, these specialized implementations can apply only if both // values are known and non-null. if old.IsKnown() && new.IsKnown() && !old.IsNull() && !new.IsNull() && typesEqual { switch { case ty == cty.String: // We have special behavior for both multi-line strings in general // and for strings that can parse as JSON. For the JSON handling // to apply, both old and new must be valid JSON. // For single-line strings that don't parse as JSON we just fall // out of this switch block and do the default old -> new rendering. oldS := old.AsString() newS := new.AsString() { // Special behavior for JSON strings containing object or // list values. oldBytes := []byte(oldS) newBytes := []byte(newS) oldType, oldErr := ctyjson.ImpliedType(oldBytes) newType, newErr := ctyjson.ImpliedType(newBytes) if oldErr == nil && newErr == nil && !(oldType.IsPrimitiveType() && newType.IsPrimitiveType()) { oldJV, oldErr := ctyjson.Unmarshal(oldBytes, oldType) newJV, newErr := ctyjson.Unmarshal(newBytes, newType) if oldErr == nil && newErr == nil { if !oldJV.RawEquals(newJV) { // two JSON values may differ only in insignificant whitespace p.buf.WriteString("jsonencode(") p.buf.WriteByte('\n') p.buf.WriteString(strings.Repeat(" ", indent+2)) p.writeActionSymbol(plans.Update) p.writeValueDiff(oldJV, newJV, indent+4, path) p.buf.WriteByte('\n') p.buf.WriteString(strings.Repeat(" ", indent)) p.buf.WriteByte(')') } else { // if they differ only in insigificant whitespace // then we'll note that but still expand out the // effective value. if p.pathForcesNewResource(path) { p.buf.WriteString(p.color.Color("jsonencode( [red]# whitespace changes force replacement[reset]")) } else { p.buf.WriteString(p.color.Color("jsonencode( [dim]# whitespace changes[reset]")) } p.buf.WriteByte('\n') p.buf.WriteString(strings.Repeat(" ", indent+4)) p.writeValue(oldJV, plans.NoOp, indent+4) p.buf.WriteByte('\n') p.buf.WriteString(strings.Repeat(" ", indent)) p.buf.WriteByte(')') } return } } } if strings.Index(oldS, "\n") < 0 && strings.Index(newS, "\n") < 0 { break } p.buf.WriteString("<<~EOT") if p.pathForcesNewResource(path) { p.buf.WriteString(p.color.Color(forcesNewResourceCaption)) } p.buf.WriteString("\n") var oldLines, newLines []cty.Value { r := strings.NewReader(oldS) sc := bufio.NewScanner(r) for sc.Scan() { oldLines = append(oldLines, cty.StringVal(sc.Text())) } } { r := strings.NewReader(newS) sc := bufio.NewScanner(r) for sc.Scan() { newLines = append(newLines, cty.StringVal(sc.Text())) } } diffLines := ctySequenceDiff(oldLines, newLines) for _, diffLine := range diffLines { p.buf.WriteString(strings.Repeat(" ", indent+2)) p.writeActionSymbol(diffLine.Action) switch diffLine.Action { case plans.NoOp, plans.Delete: p.buf.WriteString(diffLine.Before.AsString()) case plans.Create: p.buf.WriteString(diffLine.After.AsString()) default: // Should never happen since the above covers all // actions that ctySequenceDiff can return for strings p.buf.WriteString(diffLine.After.AsString()) } p.buf.WriteString("\n") } p.buf.WriteString(strings.Repeat(" ", indent)) // +4 here because there's no symbol p.buf.WriteString("EOT") return case ty.IsSetType(): p.buf.WriteString("[") if p.pathForcesNewResource(path) { p.buf.WriteString(p.color.Color(forcesNewResourceCaption)) } p.buf.WriteString("\n") var addedVals, removedVals, allVals []cty.Value for it := old.ElementIterator(); it.Next(); { _, val := it.Element() allVals = append(allVals, val) if new.HasElement(val).False() { removedVals = append(removedVals, val) } } for it := new.ElementIterator(); it.Next(); { _, val := it.Element() allVals = append(allVals, val) if val.IsKnown() && old.HasElement(val).False() { addedVals = append(addedVals, val) } } var all, added, removed cty.Value if len(allVals) > 0 { all = cty.SetVal(allVals) } else { all = cty.SetValEmpty(ty.ElementType()) } if len(addedVals) > 0 { added = cty.SetVal(addedVals) } else { added = cty.SetValEmpty(ty.ElementType()) } if len(removedVals) > 0 { removed = cty.SetVal(removedVals) } else { removed = cty.SetValEmpty(ty.ElementType()) } for it := all.ElementIterator(); it.Next(); { _, val := it.Element() p.buf.WriteString(strings.Repeat(" ", indent+2)) var action plans.Action switch { case !val.IsKnown(): action = plans.Update case added.HasElement(val).True(): action = plans.Create case removed.HasElement(val).True(): action = plans.Delete default: action = plans.NoOp } p.writeActionSymbol(action) p.writeValue(val, action, indent+4) p.buf.WriteString(",\n") } p.buf.WriteString(strings.Repeat(" ", indent)) p.buf.WriteString("]") return case ty.IsListType() || ty.IsTupleType(): p.buf.WriteString("[") if p.pathForcesNewResource(path) { p.buf.WriteString(p.color.Color(forcesNewResourceCaption)) } p.buf.WriteString("\n") elemDiffs := ctySequenceDiff(old.AsValueSlice(), new.AsValueSlice()) for _, elemDiff := range elemDiffs { p.buf.WriteString(strings.Repeat(" ", indent+2)) p.writeActionSymbol(elemDiff.Action) switch elemDiff.Action { case plans.NoOp, plans.Delete: p.writeValue(elemDiff.Before, elemDiff.Action, indent+4) case plans.Update: p.writeValueDiff(elemDiff.Before, elemDiff.After, indent+4, path) case plans.Create: p.writeValue(elemDiff.After, elemDiff.Action, indent+4) default: // Should never happen since the above covers all // actions that ctySequenceDiff can return. p.writeValue(elemDiff.After, elemDiff.Action, indent+4) } p.buf.WriteString(",\n") } p.buf.WriteString(strings.Repeat(" ", indent)) p.buf.WriteString("]") return case ty.IsMapType(): p.buf.WriteString("{") if p.pathForcesNewResource(path) { p.buf.WriteString(p.color.Color(forcesNewResourceCaption)) } p.buf.WriteString("\n") var allKeys []string keyLen := 0 for it := old.ElementIterator(); it.Next(); { k, _ := it.Element() keyStr := k.AsString() allKeys = append(allKeys, keyStr) if len(keyStr) > keyLen { keyLen = len(keyStr) } } for it := new.ElementIterator(); it.Next(); { k, _ := it.Element() keyStr := k.AsString() allKeys = append(allKeys, keyStr) if len(keyStr) > keyLen { keyLen = len(keyStr) } } sort.Strings(allKeys) lastK := "" for i, k := range allKeys { if i > 0 && lastK == k { continue // skip duplicates (list is sorted) } lastK = k p.buf.WriteString(strings.Repeat(" ", indent+2)) kV := cty.StringVal(k) var action plans.Action if old.HasIndex(kV).False() { action = plans.Create } else if new.HasIndex(kV).False() { action = plans.Delete } else if eqV := old.Index(kV).Equals(new.Index(kV)); eqV.IsKnown() && eqV.True() { action = plans.NoOp } else { action = plans.Update } path := append(path, cty.IndexStep{Key: kV}) p.writeActionSymbol(action) p.writeValue(kV, action, indent+4) p.buf.WriteString(strings.Repeat(" ", keyLen-len(k))) p.buf.WriteString(" = ") switch action { case plans.Create, plans.NoOp: v := new.Index(kV) p.writeValue(v, action, indent+4) case plans.Delete: oldV := old.Index(kV) newV := cty.NullVal(oldV.Type()) p.writeValueDiff(oldV, newV, indent+4, path) default: oldV := old.Index(kV) newV := new.Index(kV) p.writeValueDiff(oldV, newV, indent+4, path) } p.buf.WriteByte('\n') } p.buf.WriteString(strings.Repeat(" ", indent)) p.buf.WriteString("}") return case ty.IsObjectType(): p.buf.WriteString("{") p.buf.WriteString("\n") forcesNewResource := p.pathForcesNewResource(path) var allKeys []string keyLen := 0 for it := old.ElementIterator(); it.Next(); { k, _ := it.Element() keyStr := k.AsString() allKeys = append(allKeys, keyStr) if len(keyStr) > keyLen { keyLen = len(keyStr) } } for it := new.ElementIterator(); it.Next(); { k, _ := it.Element() keyStr := k.AsString() allKeys = append(allKeys, keyStr) if len(keyStr) > keyLen { keyLen = len(keyStr) } } sort.Strings(allKeys) lastK := "" for i, k := range allKeys { if i > 0 && lastK == k { continue // skip duplicates (list is sorted) } lastK = k p.buf.WriteString(strings.Repeat(" ", indent+2)) kV := k var action plans.Action if !old.Type().HasAttribute(kV) { action = plans.Create } else if !new.Type().HasAttribute(kV) { action = plans.Delete } else if eqV := old.GetAttr(kV).Equals(new.GetAttr(kV)); eqV.IsKnown() && eqV.True() { action = plans.NoOp } else { action = plans.Update } path := append(path, cty.GetAttrStep{Name: kV}) p.writeActionSymbol(action) p.buf.WriteString(k) p.buf.WriteString(strings.Repeat(" ", keyLen-len(k))) p.buf.WriteString(" = ") switch action { case plans.Create, plans.NoOp: v := new.GetAttr(kV) p.writeValue(v, action, indent+4) case plans.Delete: oldV := old.GetAttr(kV) newV := cty.NullVal(oldV.Type()) p.writeValueDiff(oldV, newV, indent+4, path) default: oldV := old.GetAttr(kV) newV := new.GetAttr(kV) p.writeValueDiff(oldV, newV, indent+4, path) } p.buf.WriteString("\n") } p.buf.WriteString(strings.Repeat(" ", indent)) p.buf.WriteString("}") if forcesNewResource { p.buf.WriteString(p.color.Color(forcesNewResourceCaption)) } return } } // In all other cases, we just show the new and old values as-is p.writeValue(old, plans.Delete, indent) if new.IsNull() { p.buf.WriteString(p.color.Color(" [dark_gray]->[reset] ")) } else { p.buf.WriteString(p.color.Color(" [yellow]->[reset] ")) } p.writeValue(new, plans.Create, indent) if p.pathForcesNewResource(path) { p.buf.WriteString(p.color.Color(forcesNewResourceCaption)) } } // writeActionSymbol writes a symbol to represent the given action, followed // by a space. // // It only supports the actions that can be represented with a single character: // Create, Delete, Update and NoAction. func (p *blockBodyDiffPrinter) writeActionSymbol(action plans.Action) { switch action { case plans.Create: p.buf.WriteString(p.color.Color("[green]+[reset] ")) case plans.Delete: p.buf.WriteString(p.color.Color("[red]-[reset] ")) case plans.Update: p.buf.WriteString(p.color.Color("[yellow]~[reset] ")) case plans.NoOp: p.buf.WriteString(" ") default: // Should never happen p.buf.WriteString(p.color.Color("? ")) } } func (p *blockBodyDiffPrinter) pathForcesNewResource(path cty.Path) bool { if !p.action.IsReplace() { // "requiredReplace" only applies when the instance is being replaced return false } return p.requiredReplace.Has(path) } func ctyEmptyString(value cty.Value) bool { if !value.IsNull() && value.IsKnown() { valueType := value.Type() if valueType == cty.String && value.AsString() == "" { return true } } return false } func ctyGetAttrMaybeNull(val cty.Value, name string) cty.Value { attrType := val.Type().AttributeType(name) if val.IsNull() { return cty.NullVal(attrType) } // We treat "" as null here // as existing SDK doesn't support null yet. // This allows us to avoid spurious diffs // until we introduce null to the SDK. attrValue := val.GetAttr(name) if ctyEmptyString(attrValue) { return cty.NullVal(attrType) } return attrValue } func ctyCollectionValues(val cty.Value) []cty.Value { if !val.IsKnown() || val.IsNull() { return nil } ret := make([]cty.Value, 0, val.LengthInt()) for it := val.ElementIterator(); it.Next(); { _, value := it.Element() ret = append(ret, value) } return ret } // ctySequenceDiff returns differences between given sequences of cty.Value(s) // in the form of Create, Delete, or Update actions (for objects). func ctySequenceDiff(old, new []cty.Value) []*plans.Change { var ret []*plans.Change lcs := objchange.LongestCommonSubsequence(old, new) var oldI, newI, lcsI int for oldI < len(old) || newI < len(new) || lcsI < len(lcs) { for oldI < len(old) && (lcsI >= len(lcs) || !old[oldI].RawEquals(lcs[lcsI])) { isObjectDiff := old[oldI].Type().IsObjectType() && new[newI].Type().IsObjectType() if isObjectDiff && newI < len(new) { ret = append(ret, &plans.Change{ Action: plans.Update, Before: old[oldI], After: new[newI], }) oldI++ newI++ // we also consume the next "new" in this case continue } ret = append(ret, &plans.Change{ Action: plans.Delete, Before: old[oldI], After: cty.NullVal(old[oldI].Type()), }) oldI++ } for newI < len(new) && (lcsI >= len(lcs) || !new[newI].RawEquals(lcs[lcsI])) { ret = append(ret, &plans.Change{ Action: plans.Create, Before: cty.NullVal(new[newI].Type()), After: new[newI], }) newI++ } if lcsI < len(lcs) { ret = append(ret, &plans.Change{ Action: plans.NoOp, Before: new[newI], After: new[newI], }) // All of our indexes advance together now, since the line // is common to all three sequences. lcsI++ oldI++ newI++ } } return ret } func ctyEqualWithUnknown(old, new cty.Value) bool { if !old.IsWhollyKnown() || !new.IsWhollyKnown() { return false } return old.Equals(new).True() } // ctyTypesEqual checks equality of two types more loosely // by avoiding checks of object/tuple elements // as we render differences on element-by-element basis anyway func ctyTypesEqual(oldT, newT cty.Type) bool { if oldT.IsObjectType() && newT.IsObjectType() { return true } if oldT.IsTupleType() && newT.IsTupleType() { return true } return oldT.Equals(newT) } func ctyEnsurePathCapacity(path cty.Path, minExtra int) cty.Path { if cap(path)-len(path) >= minExtra { return path } newCap := cap(path) * 2 if newCap < (len(path) + minExtra) { newCap = len(path) + minExtra } newPath := make(cty.Path, len(path), newCap) copy(newPath, path) return newPath } // ctyNullBlockListAsEmpty either returns the given value verbatim if it is non-nil // or returns an empty value of a suitable type to serve as a placeholder for it. // // In particular, this function handles the special situation where a "list" is // actually represented as a tuple type where nested blocks contain // dynamically-typed values. func ctyNullBlockListAsEmpty(in cty.Value) cty.Value { if !in.IsNull() { return in } if ty := in.Type(); ty.IsListType() { return cty.ListValEmpty(ty.ElementType()) } return cty.EmptyTupleVal // must need a tuple, then } // ctyNullBlockMapAsEmpty either returns the given value verbatim if it is non-nil // or returns an empty value of a suitable type to serve as a placeholder for it. // // In particular, this function handles the special situation where a "map" is // actually represented as an object type where nested blocks contain // dynamically-typed values. func ctyNullBlockMapAsEmpty(in cty.Value) cty.Value { if !in.IsNull() { return in } if ty := in.Type(); ty.IsMapType() { return cty.MapValEmpty(ty.ElementType()) } return cty.EmptyObjectVal // must need an object, then } // ctyNullBlockSetAsEmpty either returns the given value verbatim if it is non-nil // or returns an empty value of a suitable type to serve as a placeholder for it. func ctyNullBlockSetAsEmpty(in cty.Value) cty.Value { if !in.IsNull() { return in } // Dynamically-typed attributes are not supported inside blocks backed by // sets, so our result here is always a set. return cty.SetValEmpty(in.Type().ElementType()) }