Without using absolute paths any module info is lost in the output. And the attributes were randomly ordered and so changed between different executions of the command.
When HCL encounters an error during expression evaluation, it annotates
its diagnostics with information about the expression that was being
evaluated and the EvalContext it was evaluated in.
This gives us enough information to show helpful hints to the user about
the final values of any reference expressions that are present in the
expression, which is very useful extra context for expressions that get
evaluated multiple times, such as:
- Any expression in a block with "count" or "for_each" set
- The sub-expressions within a "for" expression
We used to treat the "id" attribute of a resource as special and elevate
it into its own struct field "ID" in the state, but the new state format
and provider protocol treats it just as any other attribute.
However, it's still useful to show the value of a single identifying
attribute when there isn't room in the UI for showing all of the
attributes, and so here we take a new strategy of considering "id" along
with some other conventional names as special only in the UI layer.
This new heuristic approach can be adjusted over time as new provider
patterns emerge, but for now it covers some common conventions we've seen
in real providers.
With that said, since all existing providers made for Terraform versions
prior to v0.12 were forced to set "id", we won't see any use of other
attributes here until providers are updated to remove the placeholder
ids they were generating in cases where an id was not actually relevant
but was forced by the old protocol. At that point the UX should be
improved by showing a more relevant attribute instead.
We now also allow for the possibility of no id at all, since that is valid
for resources that exist only within the Terraform state, like the ones
from the "random" and "tls" providers.
In all real cases the schemas should be populated here, but we don't want
to panic in UI rendering code if there's a bug here.
This can also be tripped up by tests with incomplete mocks. It's
unfortunate that this can therefore mask some problems in tests, but tests
can protect against it by asserting on specific output text rather than
just assuming that a zero exit status is a pass.
Added a very simple test with state and schema.
TODO: if tests are added we should test using golden files (and example
state files, instead of strings). This seemed unnecessary with the
simple test cases.
Previously we used a single plan action "Replace" to represent both the
destroy-before-create and the create-before-destroy variants of replacing.
However, this forces the apply graph builder to jump through a lot of
hoops to figure out which nodes need it forced on and rebuild parts of
the graph to represent that.
If we instead decide between these two cases at plan time, the actual
determination of it is more straightforward because each resource is
represented by only one node in the plan graph, and then we can ensure
we put the right nodes in the graph during DiffTransformer and thus avoid
the logic for dealing with deposed instances being spread across various
different transformers and node types.
As a nice side-effect, this also allows us to show the difference between
destroy-then-create and create-then-destroy in the rendered diff in the
CLI, although this change doesn't fully implement that yet.
We'll now show an "update" symbol prior to the argument to this synthetic
jsonencode(...) call, for consistency with how we show nested values in
other cases and to attach a verb to any "# forces replacement".
We'll also show a special form in the case where the value seems to differ
only in whitespace, so users can understand what's going on in that
hopefully-rare situation, particularly if those whitespace-only changes
end up forcing us to replace a remote object.
Since our own syntax for primitive values is similar to that of JSON, and
since we permit automatic conversions from number and bool to string, we
must do this special JSON value diff formatting only if the value is a
JSON array or object to avoid confusing results.
Because so far we've not supported dynamically-typed complex data
structures, several providers have used strings containing JSON to stand
in for these.
In order to get a readable diff in those cases, we'll recognize situations
where old and new are both JSON and present a diff of the effective value
of the JSON, using a faux call to the jsonencode(...) function to indicate
when we've done so.
This is a bit of a "cute" heuristic, but is important at least for now
until we can migrate away from that practice of passing large JSON strings
to providers and use dynamically-typed attributes instead.
This extra comment line gives us a place to show the full resource address
(since the block header line only includes type and name) and also allows
us to explain in long form the meaning of the change icon on the following
line.
This is a light adaptation of our earlier prototype of structural diff
rendering, as a starting point for what we'll actually ship. This is not
consistent with the latest mocks, so will need some additional work before
it is ready, but integrating this allows us to at least see the plan
contents while fixing up remaining issues elsewhere.
Previously we just left these out of the plan altogether, but in the new
plan types we intentionally include change information for every resource
instance, even if no changes are actually planned, to allow alternative
plan file viewers to show what isn't changing as well as what is.