A provider may not have the data to fill in required block values in all
cases during the resource Read operation. This is more common in import,
because there is no initial configuration or state, and it's possible
some values are only provided in the configuration.
The original intent of MinItems and MaxItems in the schema was to
enforce configuration constraints, not to enforce what the resource
could save in the state. Since the configuration is already statically
validated, and the Schema is validated against the configuration in a
separate step, we can drop these extra validation constraints in
CoerceValue and relax it to only ensure the types conform to what is
expected.
If a block was defined via "dynamic", there will be only one block value
until the expansion is known. Since we can't detect dynamic blocks at
this point, don't verify MinItems while there are unknown values in the
config.
The decoder spec can also only check for existence of a block, so limit
the check to 0 or 1.
This also fixes a few things with resource for_each:
It makes validation more like validation for count.
It makes sure the index is stored in the state properly.
In some cases (see #22020 for a specific example), the parsed hilNode
can be nil. This causes a series of panics. Instead, return an error and
move on.
When loading nested modules, the child module diagnostics were dropped
in the recursive function. This mean that the config from the submodules
wasn't fully loaded, even though no errors were reported to the user.
This caused further problems if the plan was stored in a plan file, when
means only the partial configuration was stored for the subsequent apply
operation, which would result in unexplained "Resource node has no
configuration attached" errors later on.
Also due to the child module diagnostics being lost, any newly added
nested modules would be silently ignored until `init` was run again
manually.
Previously, adding a version constraint to a module that was previously
recorded without a version in the module manifest would cause a panic.
Instead, we now use a slight variant of the "dependencies have changed"
error that doesn't try to print out a specific version number.
Previously we were trying to access a field of the analysis object before
checking if analysis produced errors. The analysis function usually
returns a nil analysis on error, so this would result in a panic whenever
that happened.
Now we'll dereference the analysis object pointer only after checking for
errors, so we'll get a chance to report the analysis error to the user.
The expression upgrade functionality mostly ignores comments because in
the old language the syntax prevented comments from appearing in the
middle of expressions, but there was one exception: object expressions.
Because HCL 1 used ObjectType both for blocks and for object expressions,
that is the one situation where something we consider to be an expression
could have inline attached comments in the old language.
We migrate these here so we don't lose these comments that don't appear
anywhere else. Other comments get gathered up into a general comments
set maintained inside the analysis object and so will be printed out as
required _between_ expressions, just as they did before.
Previously we were treating "dynamic" blocks in configuration the same as
any other block type when merging config bodies, so that dynamic blocks
in the override would override any dynamic blocks present in the base,
without considering the dynamic block type.
It's more useful and intuitive for us to treat dynamic blocks as if they
are instances of their given block type for the purpose of overriding.
That means a foo block can be overridden by a dynamic "foo" block and
vice-versa, and dynamic blocks of different types do not interact at all
during overriding.
This requires us to recognize dynamic blocks and treat them specially
during decoding of a merged body. We leave them unexpanded here because
this package is not responsible for dynamic block expansion (that happens
in the sibling "lang" package) but we do decode them enough to recognize
their labels so we can treat them as if they were blocks of the labelled
type.
In study of existing providers we've found a pattern we werent previously
accounting for of using a nested block type to represent a group of
arguments that relate to a particular feature that is always enabled but
where it improves configuration readability to group all of its settings
together in a nested block.
The existing NestingSingle was not a good fit for this because it is
designed under the assumption that the presence or absence of the block
has some significance in enabling or disabling the relevant feature, and
so for these always-active cases we'd generate a misleading plan where
the settings for the feature appear totally absent, rather than showing
the default values that will be selected.
NestingGroup is, therefore, a slight variation of NestingSingle where
presence vs. absence of the block is not distinguishable (it's never null)
and instead its contents are treated as unset when the block is absent.
This then in turn causes any default values associated with the nested
arguments to be honored and displayed in the plan whenever the block is
not explicitly configured.
The current SDK cannot activate this mode, but that's okay because its
"legacy type system" opt-out flag allows it to force a block to be
processed in this way anyway. We're adding this now so that we can
introduce the feature in a future SDK without causing a breaking change
to the protocol, since the set of possible block nesting modes is not
extensible.
These helpers determine the value that would be used for a particular
schema construct if the configuration construct it represents is not
present (or, in the case of *Block, empty) in the configuration.
This is different than cty.NullVal on the implied type because it might
return non-null "empty" values for certain constructs if their absence
would be reported as such during a decode with no required attributes or
blocks.
The v0.12 language supports numeric constants only in decimal notation, as
a simplification. For rare situations where a different base is more
appropriate, such as unix-style file modes, we've found it better for
providers to accept a string containing a representation in the
appropriate base, since that way the interpretation can be validated and
it will be displayed in the same way in the rendered plan diff, in
outputs, etc.
We use tv.Value() here to mimick how HCL 1 itself would have interpreted
these, and then format them back out in the canonical form, which
implicitly converts any non-decimal constants to decimal on the way
through.
In order to preserve pre-v0.12 idiom for list-of-object attributes, we'll
prefer to use block syntax for them except for the special situation where
the user explicitly assigns an empty list, where attribute syntax is
required in order to allow existing provider logic to differentiate from
an implicit lack of blocks.
* configs/configupgrade: detect invalid resource names and print a TODO
message
In terraform 0.11 and prior it was possible to start a resource name
with a number. This is no longer valid, as the resource name would would
be ambiguous with number values in HCL expressions.
Fixes#19919
* Update configs/configupgrade/test-fixtures/valid/invalid-resource-name/want/resource.tf
Co-Authored-By: mildwonkey <mildwonkey@users.noreply.github.com>
This includes two upstream fixes:
- Handle explicit JSON "null" consistently during decode of JSON syntax.
- Properly detect the end of a "heredoc" when formatting to avoid messing
up indentation of other lines following the heredoc.
* configs/configupgrade: detect possible relative module sources
If a module source appears to be a relative local path but does not have
a preceding ./, print a #TODO message for the user.
* internal/initwd: limit go-getter detectors to those supported by terraform
* internal/initwd: move isMaybeRelativeLocalPath check into getWithGoGetter
To avoid making two calls to getter.Detect, which potentially makes
non-trivial API calls, the "isMaybeRelativeLocalPath" check was moved to
a later step and a custom error type was added so user-friendly
diagnostics could be displayed in the event that a possible relative local
path was detected.
configs/configload and internal/initwd both had a copyDir function that
would fail if the source directory contained a symlinked directory,
because the os.FileMode.IsDir() returns false for symlinks.
This PR adds a check for a symlink and copies that symlink in the
target directory. It handles symlinks for both files and directories
(with included tests).
Fixes#20539
Terraform 0.11 and prior had an odd special case where a resource
attribute access for "count" would be resolved as the count for the
whole resource, rather than as an attribute of an individual instance as
for all other attributes.
Because Terraform 0.12 makes test_instance.foo appear as a list when count
is set (so it can be used in other expressions), it's no longer possible
to have an attribute in that position: lists don't have attributes.
Fortunately we don't really need that special case anymore since it
doesn't do anything we can't now do with the length(...) function.
This upgrade rule, then, detects references like test_instance.foo.count
and rewrites to length(test_instance.foo). As a special case, if
test_instance.foo doesn't have "count" set then it just rewrites as the
constant 1, which mimics what would've happened in that case in Terraform
0.11.
Prior to Terraform v0.12 it was possible for a provider to secretly set
some default arguments for the "connection" block, which most commonly
included a hard-coded type of "ssh" and a value from "host".
In the interests of "explicit is better than implicit", Terraform 0.12 no
longer has this feature and instead requires connection settings to be
written explicitly in terms of the resource's exported attributes. For
compatibility though, the upgrade tool will insert expressions that are
as close as possible to the logic the provider formerly implemented, or
in a few rare cases a TF-UPGRADE-TODO comment to fix it up manually.
Some of the existing resource type implementations have incredibly
complicated implementations of selecting a single host IP address to use
and don't expose the result of that as an attribute, so for now we handle
those via a complicated Terraform language expression achieving the same
result. Ideally these providers would introduce a new attribute that
exports the same address formerly exported as the hostname before their
initial v0.12-compatible release, in which case we can simplify these to
just reference the attribute in question. That would be preferable also
because it would allow use of that exported attribute in other contexts,
such as in a null_resource provisioner somewhere else or in an output
to allow a caller to deal with the SSH part itself.
This uses the fixed "superset" schema from the main terraform package to
apply our standard expression mapping, with the exception of "type" where
interpolation sequences are not supported due to the type being evaluated
early to retrieve the schema for decoding the rest.
Aside from the two special meta-arguments "connection" and "provisioner"
this is just our standard mapping from schema to conversion rules, using
the provisioner's configuration schema.
Due to a copy-paste error, this was using the message from the providers
map in a "module" block.
This new message is not particularly helpful, but we should only see it
for a configuration that wouldn't have been valid in 0.11 either, and so
it's unlikely to be displayed.
Although sets do not have indexed elements, in Terraform 0.11 and earlier
element(...) would work with sets because we'd automatically convert them
to lists on entry to HIL -- with an arbitrary-but-consistent ordering --
and this return an arbitrary-but-consistent element from the list.
The element(...) function in Terraform 0.12 does not allow this because it
is not safe in general, but there was an existing pattern relying on this
in Terraform 0.11 configs which this upgrade rule is intended to preserve:
resource "example" "example" {
count = "${length(any_set_attribute)}"
foo = "${element(any_set_attribute, count.index}"
}
The above works because the exact indices assigned in the conversion are
irrelevant: we're just asking Terraform to create one resource for each
distinct element in the set.
This upgrade rule therefore inserts an explicit conversion to list if it
is able to successfully provide that the given expression will return a
set type:
foo = "${element(tolist(any_set_attribute), count.index}"
This makes the conversion explicit, allowing users to decide if it is
safe and rework the configuration if not. Since our static type analysis
functionality focuses mainly on resource type attributes, in practice this
rule will only apply when the given expression is a statically-checkable
resource reference. Since sets are an SDK-only concept in Terraform 0.11
and earlier anyway, in practice that works out just right: it's not
possible for sets to appear anywhere else in older versions anyway.