* huge change to weave new addrs.Provider into addrs.ProviderConfig
* terraform: do not include an empty string in the returned Providers /
Provisioners
- Fixed a minor bug where results included an extra empty string
This was broken by an earlier change to verify the Terraform version
number when reading a state file. To fix it, we'll use our current version
in our constructed file which should then match when it's read back in.
We can't generate a valid plan file without a backend configuration to
write into it, but it's the responsibility of the caller (the command
package) to manage the backend configuration mechanism, so we require it
to tell us what to write here.
This feels a little strange because the backend in principle knows its
own config, but in practice the backend only knows the _processed_ version
of the config, not the raw configuration value that was used to configure
it.
converted the existing testPlanState() from terraform.State to
states.State to fix various plan tests.
reverted the "bandaid" in plans/planfile/tfplan.go - at this moment the
backend tests do not include backend configuration, and so the planfile
package can write the plan file but not read it back in. That will be
revisted in a separate track of work.
I have no confidence in the change to plans/planfile/tfplan.go. The
tests were passing an empty backend config, which planfile was able to
write to a file but not read from the same file. This change let me move
past that and it did not break any tests in the planfile package, but I
am concerned that it introduces undesired behavior.
Previously we used a single plan action "Replace" to represent both the
destroy-before-create and the create-before-destroy variants of replacing.
However, this forces the apply graph builder to jump through a lot of
hoops to figure out which nodes need it forced on and rebuild parts of
the graph to represent that.
If we instead decide between these two cases at plan time, the actual
determination of it is more straightforward because each resource is
represented by only one node in the plan graph, and then we can ensure
we put the right nodes in the graph during DiffTransformer and thus avoid
the logic for dealing with deposed instances being spread across various
different transformers and node types.
As a nice side-effect, this also allows us to show the difference between
destroy-then-create and create-then-destroy in the rendered diff in the
CLI, although this change doesn't fully implement that yet.
During the plan operation we need to retain _somewhere_ the planned
changes for all outputs so we can refer to them during expression
evaluation. For consistency with how we handle resource instance changes,
we'll keep them in the plan so we can properly retain unknown values,
which cannot be written to state.
As with output values in the state, only root output plans are retained
in a round-trip through the on-disk plan file format, but that's okay
because we can trivially re-calculate all of these during apply. We
include the _root_ outputs in the plan file only because they are
externally-visible side effects that ought to be included in any rendering
of the plan made from the plan file for user inspection.
This allows a provider to retain arbitrary extra data in the plan and
make use of it during apply. The contents are not used by Terraform and
never shown to the user.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
The types here were originally written to allow us to defer decoding of
object values until schemas are available, but it turns out that this was
forcing us to defer decoding longer than necessary and potentially decode
the same value multiple times.
To avoid this, we create pairs of types to represent the encoded and
decoded versions and methods for moving between them. These types are
identical to one another apart from how the dynamic values are
represented.
We shouldn't really need these because the plan is already filtered to
include diffs only for targeted resources, but we currently rely on this
to filter out non-resource items from the diff, and so we'll retain it
for now to avoid reworking how the apply-time graph builder works.
On the first pass here we erroneously assumed that this was redundant with
the backend settings embedded in the configuration itself. In practice,
users can override backend configuration when running "terraform init"
and so we need to record the _effective_ backend configuration.
Along with this, we also return the selected workspace name at the time
the plan was created so we'll later be able to produce a specialized error
for the situation of having the wrong workspace selected. This isn't
strictly required because we'll also check the lineage of the state, but
the error message that would result from that failure would be relatively
opaque and thus less helpful to the user.
This allows us to record the resource-to-provider associations we made
during the plan phase and ensure that we use the same config during
apply.
This isn't technically necessary, since we can in principle just repeat
the same matching algorithm against the config, but that algorithm is
relatively complicated and so if we execute it just once during plan we
remove the risk of bugs causing different decisions to be made during
the apply phase.
This also includes updates to the plan file format to include the provider
addresses. Since we've not actually shipped any version of Terraform
using our protobuf schema yet, we renumber here all of the fields after
the new one to keep them incrementing consecutively. This example should
not be followed after we have a released version of Terraform using this,
as a courtesy to anyone trying to parse these files (even though we're
not yet guaranteeing compatibility between releases).
The new format is radically different in than the old in physical
structure, but still has the same logical parts: the plan itself, a
snapshot of the input configuration, and a snapshot of the state as it
existed when the plan was created.
Rather than creating plan-specific serializations of state and config, the
new format instead leans on the existing file formats implemented
elsewhere, wrapping the result up in a zip archive with some internal file
naming conventions.
The plan portion of the file is serialized with protobuf, consistent with
our general strategy of replacing all use of encoding/gob with protobuf
moving forward.