I couldn't see a simple path get this working for Maps, Sets,
and Lists, so lets land it as a primitive-only schema feature.
I think validation on primitives comprises 80% of the use cases anyways.
Guarantees that the `interface{}` arg to ValidateFunc is the proper
type, allowing implementations to be simpler.
Finish the docstring on `ValidateFunc` to call this out.
/cc @mitchellh
The runtime impl of ConfictsWith uses Resource.Get(), which makes it
work with any other attribute of the resource - the InternalValidate was
only checking against the local schemaMap though, preventing subResource
from using ConflictsWith properly.
It's a lot of wiring and it's a bit ugly, but it's not runtime code, so
I'm a bit less concerned about that aspect.
This should take care of the problem mentioned in #1909
Removed fields show a customizable error message to the user when they
are used in a Terraform config. This is a tool that provider authors can
use for user feedback as they evolve their Schemas.
refs #957
Deprecated fields show a customizable warning message to the user when
they are used in a Terraform config. This is a tool that provider
authors can use for user feedback as they evolve their Schemas.
fixes#957
We were waiting until the higher-level (m schemaMap) diffString method
to apply defaults, which was messing with set hashcode evaluation for
cases when a field with a default is included in the hash function.
fixes#824
/cc @phinze - This is pretty straightforward, almost magically so. The
reason this works is because in `diffString` we use mapstructure[1] with
"weak decode mode" to just be responisble for turning anything into a
string.
[1]: https://github.com/mitchellh/mapstructure
Don't check if the root key is being computed for composite types.
Instead, continue recursing the composite type in order to check if
the sub-key, key.N, for each individual element is being computed.
Fixes a panic which occurs when validating a composite type where
the value is an unknown kind for the schema.
This adds "field.#" values to the state/diff with the element count of a
map. This fixes a major issue around not knowing when child elements are
computed when doing variable access of a computed map.
Example, if you have a schema like this:
"foo": &Schema{
Type: TypeMap,
Computed: true,
}
And you access it like this in a resource:
${type.name.foo.computed-field}
Then Terraform will error that "field foo could not be found on resource
type.name". By adding that "foo.#" is computed, Terraform core will pick
up that it WILL exist, so its okay.
This is a refactored solution for PR #616. Functionally this is still
the same change, but it’s implemented a lot cleaner with less code and
less changes to existing parts of TF.
It’s not enough to only check if no new value is set. It can also be
that a new value is set, but contains a variable that cannot be
interpolated until a depending resource is created during the apply
fase.
I actually found this one as one of the acceptance tests for the AWS
ELB resource was failing. It failed with the following error:
```
--- FAIL: TestAccAWSELB_InstanceAttaching (177.83 seconds)
testing.go:121: Step 1 error: Error applying: aws_elb.bar: diffs
didn't match during apply. This is a bug with the resource provider,
please report a bug.
FAIL
exit status 1
FAIL github.com/hashicorp/terraform/builtin/providers/aws 177.882s
```
After a quick look I noticed it was actually a bug in core TF so added
the test and made sure all unit tests and AWS acceptance tests are now
running successfully.