The formatter in `command/format/state.go`, when formatting a resource
with an aliased provider, was looking for a schema with the alias (ie,
test.foo), but the schemas are only listed by provider type (test).
Update the state formatter to lookup schemas by provider type only.
Some of the show tests (and a couple others) were not properly cleaning
up the created tmpdirs, so I fixed those. Also, the show tests are using
a statefile named `state.tfstate`, but were not passing that path to the
show command, so we were getting some false positives (a `show` command
that returns `no state` exits 0).
Fixes#21462
When warnings appear in isolation (not accompanied by an error) it's
reasonable to want to defer resolving them for a while because they are
not actually blocking immediate work.
However, our warning messages tend to be long by default in order to
include all of the necessary context to understand the implications of
the warning, and that can make them overwhelming when combined with other
output.
As a compromise, this adds a new CLI option -compact-warnings which is
supported for all the main operation commands and which uses a more
compact format to print out warnings as long as they aren't also
accompanied by errors.
The default remains unchanged except that the threshold for consolidating
warning messages is reduced to one so that we'll now only show one of
each distinct warning summary.
Full warning messages are always shown if there's at least one error
included in the diagnostic set too, because in that case the warning
message could contain additional context to help understand the error.
* huge change to weave new addrs.Provider into addrs.ProviderConfig
* terraform: do not include an empty string in the returned Providers /
Provisioners
- Fixed a minor bug where results included an extra empty string
We have a special treatment for multi-line strings that are being updated
in-place where we show them across multiple lines in the plan output, but
we didn't use that same treatment for rendering multi-line strings in
isolation such as when they are being added for the first time.
Here we detect when we're rendering a multi-line string in a no-change
situation and render it using the diff renderer instead, using the same
value for old and new and thus producing a multi-line result without any
diff markers at all.
This improves consistency between the change and no-change cases, and
makes multi-line strings (such as YAML in block mode) readable in all
cases.
This "Plan" type, along with the other types it directly or indirectly
embeds and the associated functions, are adaptations of the
flatmap-oriented plan renderer logic from Terraform 0.11 and prior.
The current diff rendering logic is in diff.go, and so the contents of the
plan.go file are defunct apart from the DiffActionSymbol function that
both implementations share. Therefore here we move DiffActionSymbol into
diff.go and then remove plan.go entirely, in the interests of dead code
removal.
Previously we were using the experimental HCL 2 repository, but now we'll
shift over to the v2 import path within the main HCL repository as part of
actually releasing HCL 2.0 as stable.
This is a mechanical search/replace to the new import paths. It also
switches to the v2.0.0 release of HCL, which includes some new code that
Terraform didn't previously have but should not change any behavior that
matters for Terraform's purposes.
For the moment the experimental HCL2 repository is still an indirect
dependency via terraform-config-inspect, so it remains in our go.sum and
vendor directories for the moment. Because terraform-config-inspect uses
a much smaller subset of the HCL2 functionality, this does still manage
to prune the vendor directory a little. A subsequent release of
terraform-config-inspect should allow us to completely remove that old
repository in a future commit.
cty now guarantees that sets of primitive values will iterate in a
reasonable order. Previously it was the caller's responsibility to deal
with that, but we invariably neglected to do so, causing inconsistent
ordering. Since cty prioritizes consistent behavior over performance, it
now imposes its own sort on set elements as part of iterating over them so
that calling applications don't have to worry so much about it.
This change also causes cty to consistently push unknown and null values
in sets to the end of iteration, where before that was undefined. This
means that our diff output will now consistently list additions before
removals when showing sets, rather than the ordering being undefined as
before.
The ordering of known, non-null, non-primitive values is still not
contractually fixed but remains consistent for a particular version of
cty.
When rendering the diff, the NoOp changes should come from the LCS
sequence, rather than the new sequence. The two indexes will not align
in many cases, adding the wrong new object or indexing out of bounds.
In study of existing providers we've found a pattern we werent previously
accounting for of using a nested block type to represent a group of
arguments that relate to a particular feature that is always enabled but
where it improves configuration readability to group all of its settings
together in a nested block.
The existing NestingSingle was not a good fit for this because it is
designed under the assumption that the presence or absence of the block
has some significance in enabling or disabling the relevant feature, and
so for these always-active cases we'd generate a misleading plan where
the settings for the feature appear totally absent, rather than showing
the default values that will be selected.
NestingGroup is, therefore, a slight variation of NestingSingle where
presence vs. absence of the block is not distinguishable (it's never null)
and instead its contents are treated as unset when the block is absent.
This then in turn causes any default values associated with the nested
arguments to be honored and displayed in the plan whenever the block is
not explicitly configured.
The current SDK cannot activate this mode, but that's okay because its
"legacy type system" opt-out flag allows it to force a block to be
processed in this way anyway. We're adding this now so that we can
introduce the feature in a future SDK without causing a breaking change
to the protocol, since the set of possible block nesting modes is not
extensible.
Due to these tests happening in the wrong order, removing an object from
the end of a sequence of objects would previously cause a bounds-check
panic.
Rather than a more severe rework of the logic here, for now we'll just
introduce an extra precondition to prevent the panic. The code that
follows already handles the case where there _is_ no new object (i.e. the
"old" object is being deleted) as long as we're able to pass through this
type-checking logic.
The new "JSON list of objects - removing item" test covers this problem
by rendering a diff for an object being removed from the end of a list
of objects within a JSON value.
Our initial prototype of new-style diff rendering excluded this because
the old SDK has no support for this construct. However, we want to be able
to introduce this construct in the new SDK without breaking compatibility
with existing versions of Terraform Core, so we need to implement it now
so it's ready to be used once the SDK implements it.
The key associated with each block allows us to properly correlate the
items to recognize the difference between an in-place update of an
existing block and the addition/deletion of a block.
Our null-to-empty normalization was previously assuming these would always
be collection types, but that isn't true when a block contains something
dynamic since we must then use tuple or object types instead to properly
represent all of the individual element types.
We use cty a little differently when a nested list block contains a
dynamically-typed attribute: it appears as a tuple value instead of a
list value so that we can retain the individual types of each element.
Here we introduce a test for that case, but doing so required also making
the runTestCases function handle types in a stricter way so that it will
produce planned values that match how Terraform Core would do it,
including the necessary late-bound type information for the
dynamically-typed attribute.
We are now allowing the legacy SDK to opt out of the safety checks we try
to do after plan and apply, and so in such cases the before/after values
in planned changes may be inconsistent with our usual rules.
To avoid adding lots of extra complexity to the diff renderer to deal with
these situations, instead we'll normalize the handling of nested blocks
prior to using these values.
In the long run it'd be better to do this normalization at the source,
immediately after we receive an object from a provider using the opt-out,
but we're doing this at the outermost layer for now to avoid risking
unintended impacts on other Terraform Core components when we're just
about to enter the beta phase of the v0.12.0 release cycle.