As part of this, I'm copying the entire text of the 0.12
docs/configuration/modules.html page into docs/configuration-0-11/modules.html —
some of the 0.11 pages needed to be able to link to the moved content, I
didn't want to jump versions jarringly, and a close reading didn't reveal
anything in there that's inaccurate for 0.11.
This will allow resources to return an unexpected change to set blocks
and attributes, otherwise we could mask these changes during
normalization.
Change the "plan" argument in normalizeNullValues to "preferDst" to more
accurately describe what the option is doing, since it no longer applies
only to PlanResourceChange.
* configs/configupgrade: detect possible relative module sources
If a module source appears to be a relative local path but does not have
a preceding ./, print a #TODO message for the user.
* internal/initwd: limit go-getter detectors to those supported by terraform
* internal/initwd: move isMaybeRelativeLocalPath check into getWithGoGetter
To avoid making two calls to getter.Detect, which potentially makes
non-trivial API calls, the "isMaybeRelativeLocalPath" check was moved to
a later step and a custom error type was added so user-friendly
diagnostics could be displayed in the event that a possible relative local
path was detected.
This should be the final change from removing the flatmap normalization.
Since we're no longer trying to a consistent zero or null value in the
flatmap config, rather we're trying to maintain the previously applied
value, ReadResource also needs to apply the normalizeNullValues step in
order to prevent unexpected diffs.
This method was added early on when the diff was being applied as the
legacy code would have done, which is no longer the case. Everything
that normalizeFlatmapContainers does should be covered by the
combination of the initial diff.Apply and the normalizeNullValues on the
final cty.Value.
If a block is uneffected by diffs, keep the block count value regardless
of what it is. Blocks containing zero values will often be represented
by only the count value.
This makes some slight adjustments to the shape of the schema we
present to Terraform Core without affecting how it is consumed by the
SDK and thus the provider. This mechanism is designed specifically to
avoid changing how the schema is interpreted by the SDK itself or by the
provider, so that prior behavior can be preserved in Terraform v0.11 mode.
This also includes a new rule that Computed-only (i.e. not also Optional)
schemas _always_ map to attributes, because that is a better mapping of
the intent: they are object values to be used in expressions. Nested
blocks conceptually represent nested objects that are in some sense
independent of what they are embedded in, and so they cannot themselves be
computed.
This allows a provider developer slightly more control over how an SDK
schema is mapped into the Terraform configuration language, overriding
some default assumptions.
ConfigMode overrides the default assumption that a schema with
an Elem of type *Resource is to be mapped to configuration as a nested
block, allowing mapping as an attribute containing an object type instead.
These behaviors only apply when a provider is being used with Terraform
v0.12 or later. They are ignored altogether in Terraform v0.11 mode, to
preserve compatibility. We are adding these primarily to allow the v0.12
version of a resource type schema to be specified to match the prevailing
usage of it in existing configurations, in situations where the default
mapping to v0.12 concepts is not appropriate.
This commit adds only the fields themselves and the InternalValidate rules
for them. A subsequent commit for Terraform v0.12 will add the behavior
as part of the protocol version 5 shim layer.
Identify module sources that look like relative paths ("child" instead
of "./child", for example) and surface a helpful error.
Previously, such module sources would be passed to go-getter, which
would fail because it was expecting an absolute, or properly relative,
path. This commit moves the check for improper relative paths sooner so
a user-friendly error can be displayed.
As we've improved the cty.Value normalization, we need to remove
normalization procedures from the flatmap handling. Keeping the empty
containers in the flatmap will prevent unexpected nils from being added
to some schema configurations
The "terraform fmt" command produces a different canonical form than we
were showing in our examples here. Our examples should always reflect the
conventions applied by "terraform fmt" to avoid confusion.
(This particular decision is a pragmatic one because the formatter design
needs to use the same rules for the colon in the ? : conditional operator
as for the colon in "for" expressions.)
Since references to attributes of resources are by far the most common
reference type, and the mapping of resource type config to the attributes
is not always obvious, here we give some real examples of patterns for
accessing different configuration constructs within resource blocks along
with the resource type's exported attributes.
Since we don't have any real examples of labelled nested blocks yet (the
current SDK doesn't support them) I've included a hypothetical example for
now just to establish the patterns around them in preparation for
beginning to introduce them as we roll out this feature in the SDK.
Our initial prototype of new-style diff rendering excluded this because
the old SDK has no support for this construct. However, we want to be able
to introduce this construct in the new SDK without breaking compatibility
with existing versions of Terraform Core, so we need to implement it now
so it's ready to be used once the SDK implements it.
The key associated with each block allows us to properly correlate the
items to recognize the difference between an in-place update of an
existing block and the addition/deletion of a block.
Our null-to-empty normalization was previously assuming these would always
be collection types, but that isn't true when a block contains something
dynamic since we must then use tuple or object types instead to properly
represent all of the individual element types.
We use cty a little differently when a nested list block contains a
dynamically-typed attribute: it appears as a tuple value instead of a
list value so that we can retain the individual types of each element.
Here we introduce a test for that case, but doing so required also making
the runTestCases function handle types in a stricter way so that it will
produce planned values that match how Terraform Core would do it,
including the necessary late-bound type information for the
dynamically-typed attribute.
When dynamically-typed attributes are in the schema, we use different
conventions for representing nested blocks containing them (using tuples
and objects instead of lists and maps).
The normalization code here doesn't deal with those because the legacy
SDK never generates them, but we must still pass them through properly or
else other SDKs will be blocked from using dynamic attributes.
Previously this function would panic in that situation. Now it will just
pass through nested blocks containing dynamic attribute values entirely
as-is, with no normalization whatsoever. That's okay, because the scope
of this function is only to normalize inconsistencies that the legacy
SDK is known to produce, and the legacy SDK never produces dynamic-typed
attributes.