The level of abstraction that needs the "svchost" is the Module, not the
FriendlyHost. Us the new method in the module package for registry
interaction.
Change "Downloading" to 'Initializing" to match the provider loading
dialog.
List each module being loaded.
If a regisry module is being downloaded, list the registry host, and the
version discovered.
Show the source string from the config that is being fetched, rather
than the go-getter url. The full source can be found in the logs for
debugging.
Add much more extensive logging
Add GetModule for the cli to initialize from a regisry module source.
Storage.GetModule fetches a module using the same detection and
discovery as used by the normal module loading. The final copy is still
done by module.GetCopy to remove vcs files.
Provide a way to pass in credentials to be used by the module.Storage
when contacting registries.
Remove the mockTLSServer and use a static discovery map pointing to the
http url for tests.
Update the command package to use the new module storage. Move the old
command output strings into the module storage itself. This could be
moved back later either by using ui callbacks, or designing a module
storage interface once we know what the final requirements will look
like.
Exporting ModuleStorage allows us to explicitly pass in the storgae
location rather than extracting it out of the getter.Storage interface,
set a UI for communiating actions back to the user, and accepting a
services Disco for discovery.
Registry modules can't be handled directly by the getter.Storage
implementation, which doesn't know how to handle versions. First see if
we have a matching module stored that satisfies our constraints. If
not, and we're getting or updating, we can look it up in the registry.
This essentially takes the place of a "registry detector" for go-getter,
but required the intermediate step of resolving the version dependency.
This also starts breaking up the huge Tree.Load method into more
manageable parts. It was sorely needed, as indicated by the difficulty
encountered in this refactor. There's still a lot that can be done to
improve this, but at least there are now a few easier to read methods
when we come back to it.
Submodules were located by using their module path as the storage key.
Now that modules may have versions, a submodule needs to know how to
locate the corect source depending on the versions of its ancestors in
the tree.
Add a version field to each Tree, and a pointer back to the parent Tree
to step back through the ancestors. The new versionedPathKey method uses
this information to build a unique key for each module, dependent on the
ancestor versions.
Not only do stored modules need to know their version if it exists, but
any relative source needs to know all the ancestor versions in order to
resolve correctly.
The getter.Storage abstraction is proving entirely inadequate here, but
we can't replace it wholesale at the moment.
The Tree loader needs to know the location of the manifest before it can
start loading any modules. Since the version will have to be part of the
hashed storage key, there is no way to know what version of each module
are stored. The storageDir function will extract the StorageDir field
from the underlying FolderStorage instance for the tree to locate the
manifest.
To add registry support, a workaround in the local module storage was
added to record the subdirectory containing the module source from
within the archive file. Here we replace that temporary implementation
with the full manifest needed to record the necessary module metadata
for module loading.
In order to support versioned modules, the actual stored version needs
to be recorded. This can't be derived from the configuration, because
the configuration only contains the constraints, and at load time we need
to be able to enumerate the stored modules and all versions in order to
resolve them.
While the local storage key will be derived from the source and version,
that information is lost once it's hashed. While the entire storage
layer could be replaced to encode the needed data in the path itself,
this provides a minimal change to work with the existing storage code.