When rendering a diff between current state and projected state, we only
show resources and outputs which have changes. However, we show a full
structural diff for these values, which includes all attributes and
blocks for a changed resource or output. The result can be a very long
diff, which makes it difficult to verify what the changed fields are.
This commit adds an experimental concise diff renderer, which suppresses
most unchanged fields, only displaying the most relevant changes and
some identifying context. This means:
- Always show all identifying attributes, initially defined as `id`,
`name`, and `tags`, even if unchanged;
- Only show changed, added, or removed primitive values: `string`,
`number`, or `bool`;
- Only show added or removed elements in unordered collections and
structural types: `map`, `set`, and `object`;
- Show added or removed elements with any surrounding unchanged elements
for sequence types: `list` and `tuple`;
- Only show added or removed nested blocks, or blocks with changed
attributes.
If any attributes, collection elements, or blocks are hidden, a count
is kept and displayed at the end of the parent scope. This ensures that
it is clear that the diff is only displaying a subset of the resource.
The experiment is currently enabled by default, but can be disabled by
setting the TF_X_CONCISE_DIFF environment variable to 0.
This pull reverts a recent change to backend/local which created two context, one with and one without state. Instead I have removed the state entirely from the validate graph (by explicitly passing a states.NewState() to the validate graph builder).
This changed caused a test failure, which (ty so much for the help) @jbardin discovered was inaccurate all along: the test's call to `Validate()` was actually what was removing the output from state. The new expected test output matches terraform's actual behavior on the command line: if you use -target to destroy a resource, an output that references only that resource is *not* removed from state even though that test would lead you to believe it did.
This includes two tests to cover the expected behavior:
TestPlan_varsUnset has been updated so it will panic if it gets more than one request to input a variable
TestPlan_providerArgumentUnset covers #26035Fixes#26035, #26027
The Consul KV store limits the size of the values in the KV store to 524288
bytes. Once the state reaches this limit Consul will refuse to save it. It is
currently possible to try to bypass this limitation by enable Gzip but the issue
will manifest itself later. This is particularly inconvenient as it is possible
for the state to reach this limit without changing the Terraform configuration
as datasources or computed attributes can suddenly return more data than they
used to. Several users already had issues with this.
To fix the problem once and for all we now split the payload in chunks of 524288
bytes when they are to large and store them separatly in the KV store. A small
JSON payload that references all the chunks so we can retrieve them later and
concatenate them to reconstruct the payload.
While this has the caveat of requiring multiple calls to Consul that cannot be
done as a single transaction as those have the same size limit, we use unique
paths for the chunks and CAS when setting the last payload so possible issues
during calls to Put() should not result in unreadable states.
Closes https://github.com/hashicorp/terraform/issues/19182
When the path ends with / (e.g. `path = "tfstate/"), the lock
path used will contain two consecutive slashes (e.g. `tfstate//.lock`) which
Consul does not accept.
This change the lock path so it is sanitized to `tfstate/.lock`.
If the user has two different Terraform project, one with `path = "tfstate"` and
the other with `path = "tfstate/"`, the paths for the locks will be the same
which will be confusing as locking one project will lock both. I wish it were
possible to forbid ending slashes altogether but doing so would require all
users currently having an ending slash in the path to manually move their
Terraform state and would be a poor user experience.
Closes https://github.com/hashicorp/terraform/issues/15747
When locking was enabled with the Consul backend and the lock not properly
released, the `terraform force-unlock <lock_id>` command would do nothing as
its implementation would exit early in that case.
It now destroys the session that created the lock and clean both the lock and
the lock-info keys.
A regression test is added to TestConsul_destroyLock() to catch the issue if it
happends again.
Closes https://github.com/hashicorp/terraform/issues/22174
Most of the state package has been deprecated by the states package.
This PR replaces all the references to the old state package that
can be done simply - the low-hanging fruit.
* states: move state.Locker to statemgr
The state.Locker interface was a wrapper around a statemgr.Full, so
moving this was relatively straightforward.
* command: remove unnecessary use of state package for writing local terraform state files
* move state.LocalState into terraform package
state.LocalState is responsible for managing terraform.States, so it
made sense (to me) to move it into the terraform package.
* slight change of heart: move state.LocalState into clistate instead of
terraform
* unlock the state if Context() has an error, exactly as backend/remote does today
* terraform console and terraform import will exit before unlocking state in case of error in Context()
* responsibility for unlocking state in the local backend is pushed down the stack, out of backend.go and into each individual state operation
* add tests confirming that state is not locked after apply and plan
* backend/local: add checks that the state is unlocked after operations
This adds tests to plan, apply and refresh which validate that the state
is unlocked after all operations, regardless of exit status. I've also
added specific tests that force Context() to fail during each operation
to verify that locking behavior specifically.
The validate command should work with the configuration, but when
validate was run at the start of a plan or apply command the state was
inserted in preparation for the next walk. This could lead to errors
when the resource schemas had changes and the state could not be
upgraded or decoded.
* command/console: return in case of errors before trying to unlock remote
state
The remote backend `Context` would exit without an active lock if there
was an error, while the local backend `Context` exited *with* a lock. This
caused a problem in `terraform console`, which would call unlock
regardless of error status.
This commit makes the local and remote backend consistently unlock the
state incase of error, and updates terraform console to check for errors
before trying to unlock the state.
* adding tests for remote and local backends
* Azure backend: support snapshots/versioning
Co-authored-by: Reda Ahdjoudj <reda.ahdjoudj@gmail.com>
Co-authored-by: Patrick F. Marques <patrickfmarques@gmail.com>
* Azure backend: Versioning -> Snapshot
Co-authored-by: Reda Ahdjoudj <reda.ahdjoudj@gmail.com>
Co-authored-by: Patrick F. Marques <patrickfmarques@gmail.com>
* backend/remote: do not panic if PrepareConfig or Configure receive null
objects
If a user cancels (ctrl-c) terraform init while it is requesting missing
configuration options for the remote backend, the PrepareConfig and
Configure functions would receive a null cty.Value which would result in
panics. This PR adds a check for null objects to the two functions in
question.
Fixes#23992
This is a baby-step towards an intended future where all Terraform actions
which have side-effects in either remote objects or the Terraform state
can go through the plan+apply workflow.
This initial change is focused only on allowing plan+apply for changes to
root module output values, so that these can be written into a new state
snapshot (for consumption by terraform_remote_state elsewhere) without
having to go outside of the primary workflow by running
"terraform refresh".
This is also better than "terraform refresh" because it gives an
opportunity to review the proposed changes before applying them, as we're
accustomed to with resource changes.
The downside here is that Terraform Core was not designed to produce
accurate changesets for root module outputs. Although we added a place for
it in the plan model in Terraform 0.12, Terraform Core currently produces
inaccurate changesets there which don't properly track the prior values.
We're planning to rework Terraform Core's evaluation approach in a
forthcoming release so it would itself be able to distinguish between the
prior state and the planned new state to produce an accurate changeset,
but this commit introduces a temporary stop-gap solution of implementing
the logic up in the local backend code, where we can freeze a snapshot of
the prior state before we take any other actions and then use that to
produce an accurate output changeset to decide whether the plan has
externally-visible side-effects and render any changes to output values.
This temporary approach should be replaced by a more appropriately-placed
solution in Terraform Core in a release, which should then allow further
behaviors in similar vein, such as user-visible drift detection for
resource instances.
* update vendored azure sdk
* vendor giovanni storage sdk
* Add giovanni clients
* go mod vendor
* Swap to new storage sdk
* workable tests
* update .go-version to 1.14.2
* Tests working minus SAS
* Add SAS Token support
* Update vendor
* Passing tests
* Add date randomizer
* Captalize RG
* Remove random bits
* Update client var name
Co-authored-by: kt <kt@katbyte.me>
The remote server might choose to skip running cost estimation for a
targeted plan, in which case we'll show a note about it in the UI and then
move on, rather than returning an "invalid status" error.
This new status isn't yet available in the go-tfe library as a constant,
so for now we have the string directly in our switch statement. This is
a pragmatic way to expedite getting the "critical path" of this feature
in place without blocking on changes to ancillary codebases. A subsequent
commit should switch this over to tfe.CostEstimateSkippedDueToTargeting
once that's available in a go-tfe release.
Previously we did not allow -target to be used with the remote backend
because there was no way to send the targets to Terraform Cloud/Enterprise
via the API.
There is now an attribute in the request for creating a plan that allows
us to send target addresses, so we'll remove that restriction and copy
the given target addresses into the API request.
This includes a new TargetAddrs field on both Run and RunCreateOptions
which we'll use to send resource addresses that were specified using
-target on the CLI command line when using the remote backend.
There were some unrelated upstream breaking changes compared to the last
version we had vendored, so this commit also includes some changes to the
backend/remote package to work with this new API, which now requires the
remote backend to be aware of the remote system's opaque workspace id.
Both differing serials and lineage protections should be bypassed
with the -force flag (in addition to resources).
Compared to other backends we aren’t just shipping over the state
bytes in a simple payload during the persistence phase of the push
command and the force flag added to the Go TFE client needs to be
specified at that time.
To prevent changing every method signature of PersistState of the
remote client I added an optional interface that provides a hook
to flag the Client as operating in a force push context. Changing
the method signature would be more explicit at the cost of not
being used anywhere else currently or the optional interface pattern
could be applied to the state itself so it could be upgraded to
support PersistState(force bool) only when needed.
Prior to this only the resources of the state were checked for
changes not the lineage or the serial. To bring this in line with
documented behavior noted above those attributes also have a “read”
counterpart just like state has. These are now checked along with
state to determine if the state as a whole is unchanged.
Tests were altered to table driven test format and testing was
expanded to include WriteStateForMigration and its interaction
with a ClientForcePusher type.
Back when we first introduced provider versioning in Terraform 0.10, we
did the provider version resolution in terraform.NewContext because we
weren't sure yet how exactly our versioning model was going to play out
(whether different versions could be selected per provider configuration,
for example) and because we were building around the limitations of our
existing filesystem-based plugin discovery model.
However, the new installer codepath is new able to do all of the
selections up front during installation, so we don't need such a heavy
inversion of control abstraction to get this done: the command package can
select the exact provider versions and pass their factories directly
to terraform.NewContext as a simple static map.
The result of this commit is that CLI commands other than "init" are now
able to consume the local cache directory and selections produced by the
installation process in "terraform init", passing all of the selected
providers down to the terraform.NewContext function for use in
implementing the main operations.
This commit is just enough to get the providers passing into the
terraform.Context. There's still plenty more to do here, including to
repair all of the tests this change has additionally broken.
To allow using the same Tablestore table with multiple OSS buckets.
e.g. instead of env:/some/path/terraform.tfstate
the LockID now becomes some-bucket/env:/some/path/terraform.tfstate
a large refactor to addrs.AbsProviderConfig, embedding the addrs.Provider instead of a Type string. I've added and updated tests, added some Legacy functions to support older state formats and shims, and added a normalization step when reading v4 (current) state files (not the added tests under states/statefile/roundtrip which work with both current and legacy-style AbsProviderConfig strings).
The remaining 'fixme' and 'todo' comments are mostly going to be addressed in a subsequent PR and involve looking up a given local provider config's FQN. This is fine for now as we are only working with default assumption.
* add TencentCloud COS backend for remote state
* add vendor of dependence
* fixed error not handle and remove default value for prefix argument
* get appid from TF_COS_APPID environment variables
This is a stepping-stone PR for the provider source project. In this PR
"legcay-stype" FQNs are created from the provider name string. Future
work involves encoding the FQN directly in the AbsProviderConfig and
removing the calls to addrs.NewLegacyProvider().
* Introduce "Local" terminology for non-absolute provider config addresses
In a future change AbsProviderConfig and LocalProviderConfig are going to
become two entirely distinct types, rather than Abs embedding Local as
written here. This naming change is in preparation for that subsequent
work, which will also include introducing a new "ProviderConfig" type
that is an interface that AbsProviderConfig and LocalProviderConfig both
implement.
This is intended to be largely just a naming change to get started, so
we can deal with all of the messy renaming. However, this did also require
a slight change in modeling where the Resource.DefaultProviderConfig
method has become Resource.DefaultProvider returning a Provider address
directly, because this method doesn't have enough information to construct
a true and accurate LocalProviderConfig -- it would need to refer to the
configuration to know what this module is calling the provider it has
selected.
In order to leave a trail to follow for subsequent work, all of the
changes here are intended to ensure that remaining work will become
obvious via compile-time errors when all of the following changes happen:
- The concept of "legacy" provider addresses is removed from the addrs
package, including removing addrs.NewLegacyProvider and
addrs.Provider.LegacyString.
- addrs.AbsProviderConfig stops having addrs.LocalProviderConfig embedded
in it and has an addrs.Provider and a string alias directly instead.
- The provider-schema-handling parts of Terraform core are updated to
work with addrs.Provider to identify providers, rather than legacy
strings.
In particular, there are still several codepaths here making legacy
provider address assumptions (in order to limit the scope of this change)
but I've made sure each one is doing something that relies on at least
one of the above changes not having been made yet.
* addrs: ProviderConfig interface
In a (very) few special situations in the main "terraform" package we need
to make runtime decisions about whether a provider config is absolute
or local.
We currently do that by exploiting the fact that AbsProviderConfig has
LocalProviderConfig nested inside of it and so in the local case we can
just ignore the wrapping AbsProviderConfig and use the embedded value.
In a future change we'll be moving away from that embedding and making
these two types distinct in order to represent that mapping between them
requires consulting a lookup table in the configuration, and so here we
introduce a new interface type ProviderConfig that can represent either
AbsProviderConfig or LocalProviderConfig decided dynamically at runtime.
This also includes the Config.ResolveAbsProviderAddr method that will
eventually be responsible for that local-to-absolute translation, so
that callers with access to the configuration can normalize to an
addrs.AbsProviderConfig given a non-nil addrs.ProviderConfig. That's
currently unused because existing callers are still relying on the
simplistic structural transform, but we'll switch them over in a later
commit.
* rename LocalType to LocalName
Co-authored-by: Kristin Laemmert <mildwonkey@users.noreply.github.com>
Right now, the only environment variable available is the same
environment variable that will be picked up by the GCP provider. Users
would like to be able to store state in separate projects or accounts or
otherwise authenticate to the provider with a service account that
doesn't have access to the state. This seems like a reasonable enough
practice to me, and the solution seems straightforward--offer an
environment variable that doesn't mean anything to the provider to
configure the backend credentials. I've added GOOGLE_BACKEND_CREDENTIALS
to manage just the backend credentials, and documented it appropriately.
* huge change to weave new addrs.Provider into addrs.ProviderConfig
* terraform: do not include an empty string in the returned Providers /
Provisioners
- Fixed a minor bug where results included an extra empty string
In order to make this work reasonably we can't avoid using some funny
heuristics, which are somewhat reasonable to apply within the context of
Terraform itself but would not be good to add to the general "logutils".
Specifically, this is adding the additional heuristic that lines starting
with spaces are continuation lines and so should inherit the log level
of the most recent non-continuation line.
* terraform/context: use new addrs.Provider as map key in provider factories
* added NewLegacyProviderType and LegacyString funcs to make it explicit that these are temporary placeholders
This PR introduces a new concept, provider fully-qualified name (FQN), encapsulated by the `addrs.Provider` struct.
* backend/remote: Filter environment variables when loading context
Following up on #23122, the remote system (Terraform Cloud or
Enterprise) serves environment and Terraform variables using a single
type of object. We only should load Terraform variables into the
Terraform context.
Fixes https://github.com/hashicorp/terraform/issues/23283.
During the Terraform 0.12 work we briefly had a partial update of the old
Terraform 0.11 (and prior) diff renderer that could work with the new
plan structure, but could produce only partial results.
We switched to the new plan implementation prior to release, but the
"terraform show" command was left calling into the old partial
implementation, and thus produced incomplete results when rendering a
saved plan.
Here we instead use the plan rendering logic from the "terraform plan"
command, making the output of both identical.
Unfortunately, due to the current backend architecture that logic lives
inside the local backend package, and it contains some business logic
around state and schema wrangling that would make it inappropriate to move
wholesale into the command/format package. To allow for a low-risk fix to
the "terraform show" output, here we avoid some more severe refactoring by
just exporting the rendering functionality in a way that allows the
"terraform show" command to call into it.
In future we'd like to move all of the code that actually writes to the
output into the "command" package so that the roles of these components
are better segregated, but that is too big a change to block fixing this
issue.