This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
Due to the fact that resources can transition between each modes, trying
to track the mode for a resource as a whole in state doesn't work,
because there may be instances with a mode different from the resource
as a whole. This is difficult for core to track, as this metadata being
changed as a side effect from multiple places often causes core to see
the incorrect mode when evaluating instances.
Since core can always determine the correct mode to evaluate from the
configuration, we don't need to interrogate the state to know the mode.
Once core no longer needs to reference EachMode from states, the
resource state can simply be a container for instances, and doesn't need
to try and track the "current" mode.
In order to efficiently build the module objects for evaluation, we need
to collect the outputs from a set of module instances. The ModuleOutputs
method will return a copy of the state outputs, while not requiring the
unnecessary copying of each entire module.
The ModuleInstance is known while building the state resource, but it's
not recorded. Since a resource may be retrieved via a ConfigResource
address, we need to know from which module instance it was loaded.
This was previously targeting the old state manager and state types, so it
needed some considerable rework to get it working again with the new state
types.
Since our new resource address syntax lacks the weird extra .deposed
special case we had before, we instead interpret addresses as
whole-instance addresses here and remove the deposed objects along with
the current one (if present), since this is more likely to match with
user expectations because we don't consider deposed objects to be
independently addressable in any other situation.
With that said, to be more explicit about what is going on we do now have
a -dry-run mode and maintain separate counts of current and deposed
instances so that we can expose that in the UI where relevant.
We previously had mechanisms to clean up only individual instance states,
leaving behind empty resource husks in the state after they were all
destroyed.
This takes care of it in the "orphan" case. It does not yet do it in the
"terraform destroy" or "terraform plan -destroy" cases because we don't
have anywhere to record in the plan that we're actually destroying and so
the resource configurations should be ignored and _everything_ should be
cleaned. We'll let the state be not-quite-empty in that case for now,
since it doesn't really hurt; cleaning up orphans is the main case because
the state will live on afterwards and so leftover cruft will accumulate
over the course of many changes.
I misunderstood the logic here on the first pass of porting to the new
provider and state types: EvalUndeposeState is supposed to return the
deposed object back to being current again, so we can undo the deposing
in the case where the create leg fails.
If we don't do this, we end up leaving the instance with no current object
at all and with its prior object deposed, and then the later destroy
node deletes that deposed object, leaving the user with no object at all.
For safety we skip this restoration if there _is_ a new current object,
since a failed create can still produce a partial result which we need
to keep to avoid losing track of any remote objects that were successfully
created.
Previously our handling of create_before_destroy -- and of deposed objects
in particular -- was rather "implicit" and spread over various different
subsystems. We'd quietly just destroy every deposed object during a
destroy operation, without any user-visible plan to do so.
Here we make things more explicit by tracking each deposed object
individually by its pseudorandomly-allocated key. There are two different
mechanisms at play here, building on the same concepts:
- During a replace operation with create_before_destroy, we *pre-allocate*
a DeposedKey to use for the prior object in the "apply" node and then
pass that exact id to the destroy node, ensuring that we only destroy
the single object we planned to destroy. In the happy path here the
user never actually sees the allocated deposed key because we use it and
then immediately destroy it within the same operation. However, that
destroy may fail, which brings us to the second mechanism:
- If any deposed objects are already present in state during _plan_, we
insert a destroy change for them into the plan so that it's explicit to
the user that we are going to destroy these additional objects, and then
create an individual graph node for each one in DiffTransformer.
The main motivation here is to be more careful in how we handle these
destroys so that from a user's standpoint we never destroy something
without the user knowing about it ahead of time.
However, this new organization also hopefully makes the code itself a
little easier to follow because the connection between the create and
destroy steps of a Replace is reprseented in a single place (in
DiffTransformer) and deposed instances each have their own explicit graph
node rather than being secretly handled as part of the main instance-level
graph node.
Prior to our refactoring here, we were relying on a lucky coincidence for
correct behavior of the plan walk following a refresh in the same run:
- The refresh phase created placeholder objects in the state to represent
any resource instance pending creation, to allow the interpolator to
read attributes from them when evaluating "provider" and "data" blocks.
In effect, the refresh walk is creating a partial plan that only covers
creation actions, but was immediately discarding the actual diff entries
and storing only the planned new state.
- It happened that objects pending creation showed up in state with an
empty ID value, since that only gets assigned by the provider during
apply.
- The Refresh function concluded by calling terraform.State.Prune, which
deletes from the state any objects that have an empty ID value, which
therefore prevented these temporary objects from surviving into the
plan phase.
After refactoring, we no longer have this special ID field on instance
object state, and we instead rely on the Status field for tracking such
things. We also no longer have an explicit "prune" step on state, since
the state mutation methods themselves keep the structure pruned.
To address this, here we introduce a new instance object status "planned",
which is equivalent to having an empty ID value in the old world. We also
introduce a new method on states.SyncState that deletes from the state
any planned objects, which therefore replaces that portion of the old
State.prune operation just for this refresh use-case.
Finally, we are now expecting the expression evaluator to pull pending
objects from the planned changeset rather than from the state directly,
and so for correct results these placeholder resource creation changes
must also be reported in a throwaway changeset during the refresh walk.
The addition of states.ObjectPlanned also permits a previously-missing
safety check in the expression evaluator to prevent us from relying on the
incomplete value stored in state for a pending object, in the event that
some bug prevents the real pending object from being written into the
planned changeset.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
The types here were originally written to allow us to defer decoding of
object values until schemas are available, but it turns out that this was
forcing us to defer decoding longer than necessary and potentially decode
the same value multiple times.
To avoid this, we create pairs of types to represent the encoded and
decoded versions and methods for moving between them. These types are
identical to one another apart from how the dynamic values are
represented.
This is a wrapper around State that is able to perform higher-level
manipulations (at the granularity of the entire state) in a
concurrency-safe manner, using the lower-level APIs exposed by State and
all of the types it contains.
The granularity of a SyncState operation roughly matches the granularity
off a state-related EvalNode in the "terraform" package, performing a
sequence of more primitive operations while guaranteeing atomicity of the
entire change.
As a compromise for convenience of usage, it's still possible to access
the individual state data objects via this API, but they are always copied
before returning to ensure that two distinct callers cannot have data
races. Callers should access the most granular object possible for their
operation.