Our new "addrs" package gives us some nice representations of various
kinds of "address" within Terraform. To talk to APIs that use these, it's
convenient to be able to easily derive such addresses from the
configuration objects.
These new methods, along with a recasting of the existing
Resource.ProviderConfigKey method to Resource.ProviderConfigAddr, give us
some key integration points to support the configuration graph transforms
in the main "terraform" package.
Previously we just ported over the simple "string", "list", and "map" type
hint keywords from the old loader, which exist primarily as hints to the
CLI for whether to treat -var=... arguments and environment variables as
literal strings or as HCL expressions.
However, we've been requested before to allow more specific constraints
here because it's generally better UX for a type error to be detected
within an expression in a calling "module" block rather than at some point
deep inside a third-party module.
To allow for more specific constraints, here we use the type constraint
expression syntax defined as an extension within HCL, which uses the
variable and function call syntaxes to represent types rather than values,
like this:
- string
- number
- bool
- list(string)
- list(any)
- list(map(string))
- object({id=string,name=string})
In native HCL syntax this looks like:
variable "foo" {
type = map(string)
}
In JSON, this looks like:
{
"variable": {
"foo": {
"type": "map(string)"
}
}
}
The selection of literal processing or HCL parsing of CLI-set values is
now explicit in the model and separate from the type, though it's still
derived from the type constraint and thus not directly controllable in
configuration.
Since this syntax is more complex than the keywords that replaced it, for
now the simpler keywords are still supported and "list" and "map" are
interpreted as list(any) and map(any) respectively, mimicking how they
were interpreted by Terraform 0.11 and earlier. For the time being our
documentation should continue to recommend these shorthand versions until
we gain more experience with the more-specific type constraints; most
users should just make use of the additional primitive type constraints
this enables: bool and number.
As a result of these more-complete type constraints, we can now type-check
the default value at config load time, which has the nice side-effect of
allowing us to produce a tailored error message if an override file
produces an invalid situation; previously the result was rather confusing
because the error message referred to the original definition of the
variable and not the overridden parts.
In our new loader we are changing certain values in configuration to be
naked keywords or references rather than quoted strings as before. Since
many of these have been shown in books, tutorials, and our own
documentation we will make the old forms generate deprecation warnings
rather than errors so that newcomers starting from older documentation
can be eased into the new syntax, rather than getting blocked.
This will also avoid creating a hard compatibility wall for reusable
modules that are already published, allowing them to still be used in
spite of these warnings and then fixed when the maintainer is able.
Some of the fields in our config structs are either mandatory in primary
files or there is a default value that we apply if absent.
Unfortunately override files impose the additional constraint that we
be allowed to omit required fields (which have presumably already been
set in the primary files) and that we are able to distinguish between a
default value and omitting a value entirely.
Since most of our fields were already acceptable for override files, here
we just add some new fields to deal with the few cases where special
handling is required and a helper function to disable the "Required" flag
on attributes in a given schema.
This is a first pass of decoding of the main Terraform configuration file
format. It hasn't yet been tested with any real-world configurations, so
it will need to be revised further as we test it more thoroughly.
These types represent the individual elements within configuration, the
modules a configuration is made of, and the configuration (static module
tree) itself.