This commit extracts the remaining UI logic from the local backend,
and removes access to the direct CLI output. This is replaced with an
instance of a `views.Operation` interface, which codifies the current
requirements for the local backend to interact with the user.
The exception to this at present is interactivity: approving a plan
still depends on the `UIIn` field for the backend. This is out of scope
for this commit and can be revisited separately, at which time the
`UIOut` field can also be removed.
Changes in support of this:
- Some instances of direct error output have been replaced with
diagnostics, most notably in the emergency state backup handler. This
requires reformatting the error messages to allow the diagnostic
renderer to line-wrap them;
- The "in-automation" logic has moved out of the backend and into the
view implementation;
- The plan, apply, refresh, and import commands instantiate a view and
set it on the `backend.Operation` struct, as these are the only code
paths which call the `local.Operation()` method that requires it;
- The show command requires the plan rendering code which is now in the
views package, so there is a stub implementation of a `views.Show`
interface there.
Other refactoring work in support of migrating these commands to the
common views code structure will come in follow-up PRs, at which point
we will be able to remove the UI instances from the unit tests for those
commands.
* providers.Interface: huge renamification
This commit renames a handful of functions in the providers.Interface to
match changes made in protocol v6. The following commit implements this
change across the rest of the codebase; I put this in a separate commit
for ease of reviewing and will squash these together when merging.
One noteworthy detail: protocol v6 removes the config from the
ValidateProviderConfigResponse, since it's never been used. I chose to
leave that in place in the interface until we deprecate support for
protocol v5 entirely.
Note that none of these changes impact current providers using protocol
v5; the protocol is unchanged. Only the translation layer between the
proto and terraform have changed.
The clistate package includes a Locker interface which provides a simple
way for the local backend to lock and unlock state, while providing
feedback to the user if there is a delay while waiting for the lock.
Prior to this commit, the backend was responsible for initializing the
Locker, passing through direct access to the cli.Ui instance.
This structure prevented commands from implementing different
implementations of the state locker UI. In this commit, we:
- Move the responsibility of creating the appropriate Locker to the
source of the Operation;
- Add the ability to set the context for a Locker via a WithContext
method;
- Replace the Locker's cli.Ui and Colorize members with a StateLocker
view;
- Implement views.StateLocker for human-readable UI;
- Update the Locker interface to return detailed diagnostics instead of
errors, reducing its direct interactions with UI;
- Add a Timeout() method on Locker to allow the remote backend to
continue to misuse the -lock-timeout flag to cancel pending runs.
When an Operation is created, the StateLocker field must now be
populated with an implementation of Locker. For situations where locking
is disabled, this can be a no-op locker.
This change has no significant effect on the operation of Terraform,
with the exception of slightly different formatting of errors when state
locking or unlocking fails.
Move the code which renders Terraform hook callbacks as UI into the
views package, backed by a views.View instead of a cli.Ui. Update test
setup accordingly.
To allow commands to control this hook, we add a hooks member on the
backend Operation struct. This supersedes the hooks in the Terraform
context, which is not directly controlled by the command logic.
This commit should not change how Terraform works, and is refactoring in
preparation for more changes which move UI code out of the backend.
Terraform supports multiple output formats for several sub-commands.
The default format is user-readable text, but many sub-commands support
a `-json` flag to output a machine-readable format for the result. The
output command also supports a `-raw` flag for a simpler, scripting-
focused machine readable format.
This commit adds a "views" abstraction, intended to help ensure
consistency between the various output formats. This extracts the render
specific code from the command package, and moves it into a views
package. Each command is expected to create an interface for its view,
and one or more implementations of that interface.
By doing so, we separate the concerns of generating the sub-command
result from rendering the result in the specified output format. This
should make it easier to ensure that all output formats will be updated
together when changes occur in the result-generating phase.
There are some other consequences of this restructuring:
- Views now directly access the terminal streams, rather than the
now-redundant cli.Ui instance;
- With the reorganization of commands, parsing CLI arguments is now the
responsibility of a separate "arguments" package.
For now, views are added only for the output sub-command, as an example.
Because this command uses code which is shared with the apply and
refresh commands, those are also partially updated.
Errors encountered when parsing flags for apply, plan, and refresh were
being suppressed. This resulted in a generic usage error when using an
invalid `-target` flag.
This commit makes several changes to address this. First, these commands
now output the flag parse error before exiting, leaving at least some
hint about the error. You can verify this manually with something like:
terraform apply -invalid-flag
We also change how target attributes are parsed, moving the
responsibility from the flags instance to the command. This allows us to
customize the diagnostic output to be more user friendly. The
diagnostics now look like:
```shellsession
$ terraform apply -no-color -target=foo
Error: Invalid target "foo"
Resource specification must include a resource type and name.
```
Finally, we add test coverage for both parsing of target flags, and at
the command level for successful use of resource targeting. These tests
focus on the UI output (via the change summary and refresh logs), as the
functionality of targeting is covered by the context tests in the
terraform package.
The previous changes removing support for using the trailing positional
argument as a working directory missed a spot in the apply/destroy
command implementation. We still support this argument for applying a
saved plan:
terraform apply foo.tfplan
However, if you pass a positional path which doesn't "look like" a plan
(for example, the path to a configuration directory), Terraform would
silently ignore it and continue.
This commit fixes that by adding an error message if the user specifies
a path which the plan loader rejects as not "looking like" a plan. This
message includes a reference to the `-chdir` flag as a pointer about
what to do next.
We also rearrange the error message when calling `terraform destroy`
with a plan file argument, and add test coverage for the above. While
we're here, update the destroy tests to copy the fixture directory,
chdir, and defer cleanup.
This dramatically simplifies the logic around auto-approve, which is
nice.
Also add test coverage for the manual approve step, for both apply and
destroy, answering both yes and no.
Several commands continued to support the legacy positional path
argument to specify a working directory. This functionality has been
replaced with the global -chdir flag, which is specified before any
other arguments, including the sub-command name.
This commit removes support for the trailing path parameter from
most commands. The only command which still supports a path argument is
fmt, which also supports "-" to indicate receiving configuration from
standard input.
Any invocation of a command with an invalid trailing path parameter will
result in a short error message, pointing at the -chdir alternative.
There are many test updates in this commit, almost all of which are
migrations from using positional arguments to specify a working
directory. Because of the layer at which these tests run, we are unable
to use the -chdir argument, so the churn in test files is larger than
ideal. Sorry!
Core is only using the PrepareProviderConfig call for the validation
part of the method, but we should be re-validating the final config
immediately before Configure.
This change elects to not start using the PreparedConfig here, since
there is no useful reason for it at this point, and it would
introduce a functional difference between terraform releases that can be
avoided.
Use a slightly modified value renderer from terraform-provider-testing
to display values in the console REPL, as well as outputs from the apply
and outputs subcommands.
Derived from code in this repository, MIT licensed:
https://github.com/apparentlymart/terraform-provider-testing
Note that this is technically a breaking change for the console
subcommand, which would previously error if the user attempted to render
an unknown value (such as an unset variable). This was marked as an
unintentional side effect, with the goal being the new behaviour of
rendering "(unknown)", which is why I changed the behaviour in this
commit.
Most of the state package has been deprecated by the states package.
This PR replaces all the references to the old state package that
can be done simply - the low-hanging fruit.
* states: move state.Locker to statemgr
The state.Locker interface was a wrapper around a statemgr.Full, so
moving this was relatively straightforward.
* command: remove unnecessary use of state package for writing local terraform state files
* move state.LocalState into terraform package
state.LocalState is responsible for managing terraform.States, so it
made sense (to me) to move it into the terraform package.
* slight change of heart: move state.LocalState into clistate instead of
terraform
Back when we first introduced provider versioning in Terraform 0.10, we
did the provider version resolution in terraform.NewContext because we
weren't sure yet how exactly our versioning model was going to play out
(whether different versions could be selected per provider configuration,
for example) and because we were building around the limitations of our
existing filesystem-based plugin discovery model.
However, the new installer codepath is new able to do all of the
selections up front during installation, so we don't need such a heavy
inversion of control abstraction to get this done: the command package can
select the exact provider versions and pass their factories directly
to terraform.NewContext as a simple static map.
The result of this commit is that CLI commands other than "init" are now
able to consume the local cache directory and selections produced by the
installation process in "terraform init", passing all of the selected
providers down to the terraform.NewContext function for use in
implementing the main operations.
This commit is just enough to get the providers passing into the
terraform.Context. There's still plenty more to do here, including to
repair all of the tests this change has additionally broken.
a large refactor to addrs.AbsProviderConfig, embedding the addrs.Provider instead of a Type string. I've added and updated tests, added some Legacy functions to support older state formats and shims, and added a normalization step when reading v4 (current) state files (not the added tests under states/statefile/roundtrip which work with both current and legacy-style AbsProviderConfig strings).
The remaining 'fixme' and 'todo' comments are mostly going to be addressed in a subsequent PR and involve looking up a given local provider config's FQN. This is fine for now as we are only working with default assumption.
* Introduce "Local" terminology for non-absolute provider config addresses
In a future change AbsProviderConfig and LocalProviderConfig are going to
become two entirely distinct types, rather than Abs embedding Local as
written here. This naming change is in preparation for that subsequent
work, which will also include introducing a new "ProviderConfig" type
that is an interface that AbsProviderConfig and LocalProviderConfig both
implement.
This is intended to be largely just a naming change to get started, so
we can deal with all of the messy renaming. However, this did also require
a slight change in modeling where the Resource.DefaultProviderConfig
method has become Resource.DefaultProvider returning a Provider address
directly, because this method doesn't have enough information to construct
a true and accurate LocalProviderConfig -- it would need to refer to the
configuration to know what this module is calling the provider it has
selected.
In order to leave a trail to follow for subsequent work, all of the
changes here are intended to ensure that remaining work will become
obvious via compile-time errors when all of the following changes happen:
- The concept of "legacy" provider addresses is removed from the addrs
package, including removing addrs.NewLegacyProvider and
addrs.Provider.LegacyString.
- addrs.AbsProviderConfig stops having addrs.LocalProviderConfig embedded
in it and has an addrs.Provider and a string alias directly instead.
- The provider-schema-handling parts of Terraform core are updated to
work with addrs.Provider to identify providers, rather than legacy
strings.
In particular, there are still several codepaths here making legacy
provider address assumptions (in order to limit the scope of this change)
but I've made sure each one is doing something that relies on at least
one of the above changes not having been made yet.
* addrs: ProviderConfig interface
In a (very) few special situations in the main "terraform" package we need
to make runtime decisions about whether a provider config is absolute
or local.
We currently do that by exploiting the fact that AbsProviderConfig has
LocalProviderConfig nested inside of it and so in the local case we can
just ignore the wrapping AbsProviderConfig and use the embedded value.
In a future change we'll be moving away from that embedding and making
these two types distinct in order to represent that mapping between them
requires consulting a lookup table in the configuration, and so here we
introduce a new interface type ProviderConfig that can represent either
AbsProviderConfig or LocalProviderConfig decided dynamically at runtime.
This also includes the Config.ResolveAbsProviderAddr method that will
eventually be responsible for that local-to-absolute translation, so
that callers with access to the configuration can normalize to an
addrs.AbsProviderConfig given a non-nil addrs.ProviderConfig. That's
currently unused because existing callers are still relying on the
simplistic structural transform, but we'll switch them over in a later
commit.
* rename LocalType to LocalName
Co-authored-by: Kristin Laemmert <mildwonkey@users.noreply.github.com>
* huge change to weave new addrs.Provider into addrs.ProviderConfig
* terraform: do not include an empty string in the returned Providers /
Provisioners
- Fixed a minor bug where results included an extra empty string
* terraform/context: use new addrs.Provider as map key in provider factories
* added NewLegacyProviderType and LegacyString funcs to make it explicit that these are temporary placeholders
This PR introduces a new concept, provider fully-qualified name (FQN), encapsulated by the `addrs.Provider` struct.
During the 0.12 work we intended to move all of the variable value
collection logic into the UI layer (command package and backend packages)
and present them all together as a unified data structure to Terraform
Core. However, we didn't quite succeed because the interactive prompts
for unset required variables were still being handled _after_ calling
into Terraform Core.
Here we complete that earlier work by moving the interactive prompts for
variables out into the UI layer too, thus allowing us to handle final
validation of the variables all together in one place and do so in the UI
layer where we have the most context still available about where all of
these values are coming from.
This allows us to fix a problem where previously disabling input with
-input=false on the command line could cause Terraform Core to receive an
incomplete set of variable values, and fail with a bad error message.
As a consequence of this refactoring, the scope of terraform.Context.Input
is now reduced to only gathering provider configuration arguments. Ideally
that too would move into the UI layer somehow in a future commit, but
that's a problem for another day.
Now that we're actually verifying correct behavior of providers during
plan and apply, our mock providers need to behave like real providers,
properly propagating any configured values through the plan and into the
final state.
For most of these it was simpler to just switch over to using the newer
PlanResourceChangeFn mock interface, away from the legacy DiffFn approach,
because then we can just return the ProposedNewState verbatim because our
schema for these tests does not require any default values to be
populated.
Next to adding the locking for the `state push` command, this commit also fixes a small bug where the lock would not be propertly released when running the `state show` command.
And finally it renames some variables in the `[un]taint` code in order to try to standardize the var names of a few frequently used variables (e.g. statemgr.Full, states.State, states.SyncState).
Some over-zealous bulk updating of this test file caused this test to be
producing a remote state config cache file on disk when it doesn't
actually need one: the backend config comes from the plan file when
applying a saved plan.
It must now provide a basic implementation of plan and apply for its
mock provider, which in this case can just pass through the proposed value
generated by core because there are no computed attributes in this schema.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
The "config" package is no longer used and will be removed as part
of the 0.12 release cleanup. Since configschema is part of the
"new world" of configuration modelling, it makes more sense for
it to live as a subdirectory of the newer "configs" package.
Rather than try to modify all the hundreds of calls to the temp helper
functions, and cleanup the temp files at every call site, have all tests
work within a single temp directory that is removed at the end of
TestMain.
The error was being silently dropped before.
There is an interpolation error, because the plan is canceled before
some of the resources can be evaluated. There might be a better way to
handle this in the walk cancellation, but the behavior has not changed.
Make the plan and apply shutdown match implementation-wise