Variables values are marshalled with an explicit type of
cty.DynamicPseudoType, but were being decoded using `Implied Type` to
try and guess the type. This was causing errors because `Implied Type`
does not expect to find a late-bound value.
If an instance object in state has an earlier schema version number then
it is likely that the schema we're holding won't be able to decode the
raw data that is stored. Instead, we must ask the provider to upgrade it
for us first, which might also include translating it from flatmap form
if it was last updated with a Terraform version earlier than v0.12.
This ends up being a "seam" between our use of int64 for schema versions
in the providers package and uint64 everywhere else. We intend to
standardize on int64 everywhere eventually, but for now this remains
consistent with existing usage in each layer to keep the type conversion
noise contained here and avoid mass-updates to other Terraform components
at this time.
This also includes a minor change to the test helpers for the
backend/local package, which were inexplicably setting a SchemaVersion of
1 on the basic test state but setting the mock schema version to zero,
creating an invalid situation where the state would need to be downgraded.
Previously we were fetching these from the provider but then immediately
discarding the version numbers because the schema API had nowhere to put
them.
To avoid a late-breaking change to the internal structure of
terraform.ProviderSchema (which is constructed directly all over the
tests) we're retaining the resource type schemas in a new map alongside
the existing one with the same keys, rather than just switching to
using the providers.Schema struct directly there.
The methods that return resource type schemas now return two arguments,
intentionally creating a little API friction here so each new caller can
be reminded to think about whether they need to do something with the
schema version, though it can be ignored by many callers.
Since this was a breaking change to the Schemas API anyway, this also
fixes another API wart where there was a separate method for fetching
managed vs. data resource types and thus every caller ended up having a
switch statement on "mode". Now we just accept mode as an argument and
do the switch statement within the single SchemaForResourceType method.
In order to support free organizations, we need a way to load the `remote` backend and then, depending on the used offering/plan, enable or disable remote operations.
In other words, we should be able to dynamically fall back to the `local` backend if needed, after first configuring the `remote` backend.
To make this works we need to change the way this was done previously when the env var `TF_FORCE_LOCAL_BACKEND` was set. The clear difference of course being that the env var would be available on startup, while the used offering/plan is only known after being able to connect to TFE.
The changes to how we handle setting the state path on the local backend
broke the heuristic we were using here for detecting migration from one
local backend to another with the same state path, which would by default
end up deleting the state altogether after migration.
We now use the StatePaths method to do this, which takes into account
both the default values and any settings that have been set.
Additionally this addresses a flaw in the old method which could
potentially have deleted all non-default workspace state files if the
"path" setting were changed without also changing the "workspace_dir"
setting. This new approach is conservative because it will preserve all
of the files if any one overlaps.
This was failing because we now handle the settings for the local backend
a little differently as a result of decoding it with the HCL2 machinery.
Specifically, the backend.State* fields are now assumed to be what is
given in configuration, and any CLI overrides are maintained separately
in OverrideState* fields so that they can be imposed "just in time" in
StatePaths.
This is particularly important because OverrideStatePath (when set) is
used regardless of workspace name, while StatePath is a suitable value
only for the "default" workspace, with others needing to be constructed
from StateWorkspaceDir instead.
This work was done against APIs that were already changed in the branch
before work began, and so it doesn't apply to the v0.12 development work.
To allow v0.12 to merge down to master, we'll revert this work out for now
and then re-introduce equivalent functionality in later commits that works
against the new APIs.
There are several steps here and a number of them can include reaching out
to remote servers or executing local processes, so it's helpful to have
some trace logs to better narrow down causes of errors and hangs during
this step.
In earlier refactoring we skipped implementing prior state safety checks,
propagating the target addresses from plan, and verifying that all of
the providers are exactly the same from the plan being created.
This change reinstates those checks, including a new error message for
the "stale plan" situation.
If we don't do this, we can't produce any output when applying a saved
plan file.
Here we also introduce a check to the local backend's ReportResult
function so that it won't panic if CLI init is skipped, although that
will no longer happen in the apply-from-file case due to the change
described in the previous paragraph.
We can't generate a valid plan file without a backend configuration to
write into it, but it's the responsibility of the caller (the command
package) to manage the backend configuration mechanism, so we require it
to tell us what to write here.
This feels a little strange because the backend in principle knows its
own config, but in practice the backend only knows the _processed_ version
of the config, not the raw configuration value that was used to configure
it.
converted the existing testPlanState() from terraform.State to
states.State to fix various plan tests.
reverted the "bandaid" in plans/planfile/tfplan.go - at this moment the
backend tests do not include backend configuration, and so the planfile
package can write the plan file but not read it back in. That will be
revisted in a separate track of work.
I have no confidence in the change to plans/planfile/tfplan.go. The
tests were passing an empty backend config, which planfile was able to
write to a file but not read from the same file. This change let me move
past that and it did not break any tests in the planfile package, but I
am concerned that it introduces undesired behavior.
incoming values
Addresses an odd state where the priorV of an object to be changed is
known but null.
While this situation should not happen, it seemed prudent to ensure that
core is resilient to providers sending incorrect values (which might
also occur with manually edited state).
Previously we used a single plan action "Replace" to represent both the
destroy-before-create and the create-before-destroy variants of replacing.
However, this forces the apply graph builder to jump through a lot of
hoops to figure out which nodes need it forced on and rebuild parts of
the graph to represent that.
If we instead decide between these two cases at plan time, the actual
determination of it is more straightforward because each resource is
represented by only one node in the plan graph, and then we can ensure
we put the right nodes in the graph during DiffTransformer and thus avoid
the logic for dealing with deposed instances being spread across various
different transformers and node types.
As a nice side-effect, this also allows us to show the difference between
destroy-then-create and create-then-destroy in the rendered diff in the
CLI, although this change doesn't fully implement that yet.
We're not yet showing outputs in the rendered diff, so it doesn't make
sense to count them for the purpose of deciding which change action
symbols to include in the legend.
This is a light adaptation of our earlier prototype of structural diff
rendering, as a starting point for what we'll actually ship. This is not
consistent with the latest mocks, so will need some additional work before
it is ready, but integrating this allows us to at least see the plan
contents while fixing up remaining issues elsewhere.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
The "config" package is no longer used and will be removed as part
of the 0.12 release cleanup. Since configschema is part of the
"new world" of configuration modelling, it makes more sense for
it to live as a subdirectory of the newer "configs" package.
Due to how deeply the configuration types go into Terraform Core, there
isn't a great way to switch out to HCL2 gradually. As a consequence, this
huge commit gets us from the old state to a _compilable_ new state, but
does not yet attempt to fix any tests and has a number of known missing
parts and bugs. We will continue to iterate on this in forthcoming
commits, heading back towards passing tests and making Terraform
fully-functional again.
The three main goals here are:
- Use the configuration models from the "configs" package instead of the
older models in the "config" package, which is now deprecated and
preserved only to help us write our migration tool.
- Do expression inspection and evaluation using the functionality of the
new "lang" package, instead of the Interpolator type and related
functionality in the main "terraform" package.
- Represent addresses of various objects using types in the addrs package,
rather than hand-constructed strings. This is not critical to support
the above, but was a big help during the implementation of these other
points since it made it much more explicit what kind of address is
expected in each context.
Since our new packages are built to accommodate some future planned
features that are not yet implemented (e.g. the "for_each" argument on
resources, "count"/"for_each" on modules), and since there's still a fair
amount of functionality still using old-style APIs, there is a moderate
amount of shimming here to connect new assumptions with old, hopefully in
a way that makes it easier to find and eliminate these shims later.
I apologize in advance to the person who inevitably just found this huge
commit while spelunking through the commit history.
The new config loader requires some steps to happen in a different
order, particularly in regard to knowing the schema in order to
decode the configuration.
Here we lean directly on the configschema package, rather than
on helper/schema.Backend as before, because it's generally
sufficient for our needs here and this prepares us for the
helper/schema package later moving out into its own repository
to seed a "plugin SDK".
If we get a diagnostic message that references a source range, and if the
source code for the referenced file is available, we'll show a snippet of
the source code with the source range highlighted.
At the moment we have no cache of source code, so in practice this
codepath can never be visited. Callers to format.Diagnostic will be
gradually updated in subsequent commits.
* cli: show workspace name in destroy confirmation
If the workspace name is not "default", include it in the confirmation
message for `terraform destroy`.
Fixes#15480
Simplify the use of clistate.Lock by creating a clistate.Locker
instance, which stores the context of locking a state, to allow unlock
to be called without knowledge of how the state was locked.
This alows the backend code to bring the needed UI methods to the point
where the state is locked, and still unlock the state from an outer
scope.
Provide a NoopLocker as well, so that callers can always call Unlock
without verifying the status of the lock.
Add the StateLocker field to the backend.Operation, so that the state
lock can be carried between the different function scopes of the backend
code. This will allow the backend context to lock the state before it's
read, while allowing the different operations to unlock the state when
they complete.
Moves the nested select statements for backend operations into a single
function. The only difference in this part was that apply called
PersistState, which should be harmless regardless of the type of
operation being run.
If the user wishes to interrupt the running operation, only the first
interrupt was communicated to the operation by canceling the provided
context. A second interrupt would start the shutdown process, but not
communicate this to the running operation. This order of event could
cause partial writes of state.
What would happen is that once the command returns, the plugin system
would stop the provider processes. Once the provider processes dies, all
pending Eval operations would return return with an error, and quickly
cause the operation to complete. Since the backend code didn't know that
the process was shutting down imminently, it would continue by
attempting to write out the last known state. Under the right
conditions, the process would exit part way through the writing of the
state file.
Add Stop and Cancel CancelFuncs to the RunningOperation, to allow it to
easily differentiate between the two signals. The backend will then be
able to detect a shutdown and abort more gracefully.
In order to ensure that the backend is not in the process of writing the
state out, the command will always attempt to wait for the process to
complete after cancellation.
Since an early version of Terraform, the `destroy` command has always
had the `-force` flag to allow an auto approval of the interactive
prompt. 0.11 introduced `-auto-approve` as default to `false` when using
the `apply` command.
The `-auto-approve` flag was introduced to reduce ambiguity of it's
function, but the `-force` flag was never updated for a destroy.
People often use wrappers when automating commands in Terraform, and the
inconsistency between `apply` and `destroy` means that additional logic
must be added to the wrappers to do similar functions. Both commands are
more or less able to run with similar syntax, and also heavily share
their code.
This commit updates the command in `destroy` to use the `-auto-approve` flag
making working with the Terraform CLI a more consistent experience.
We leave in `-force` in `destroy` for the time-being and flag it as
deprecated to ensure a safe switchover period.
Validation is the best time to return detailed diagnostics
to the user since we're much more likely to have source
location information, etc than we are in later operations.
This change doesn't actually add any detail to the messages
yet, but it changes the interface so that we can gradually
introduce more detailed diagnostics over time.
While here there are some minor adjustments to some of the
messages to improve their consistency with terminology we
use elsewhere.
Previously we forced all remote state backends to be wrapped in a
BackupState wrapper that generates a local "terraform.tfstate.backup"
file before updating the remote state.
This backup mechanism was motivated by allowing users to recover a
previous state if user error caused an undesirable change such as loss
of the record of one or more resources. However, it also has the downside
of flushing a possibly-sensitive state to local disk in a location where
users may not realize its purpose and accidentally check it into version
control. Those using remote state would generally prefer that state never
be flushed to local disk at all.
The use-case of recovering older states can be dealt with for remote
backends by selecting a backend that has preservation of older versions
as a first-class feature, such as S3 versioning or Terraform Enterprise's
first-class historical state versioning mechanism.
There remains still one case where state can be flushed to local disk: if
a write to the remote backend fails during "terraform apply" then we will
still create the "errored.tfstate" file to allow the user to recover. This
seems like a reasonable compromise because this is done only in an
_exceptional_ case, and the console output makes it very clear that this
file has been created.
Fixes#15339.
In #15884 we adjusted the plan output to give an explicit command to run
to apply a plan, whereas before this command was just alluded to in the
prose.
Since releasing that, we've got good feedback that it's confusing to
include such instructions when Terraform is running in a workflow
automation tool, because such tools usually abstract away exactly what
commands are run and require users to take different actions to
proceed through the workflow.
To accommodate such environments while retaining helpful messages for
normal CLI usage, here we introduce a new environment variable
TF_IN_AUTOMATION which, when set to a non-empty value, is a hint to
Terraform that it isn't being run in an interactive command shell and
it should thus tone down the "next steps" messaging.
The documentation for this setting is included as part of the "...in
automation" guide since it's not generally useful in other cases. We also
intentionally disclaim comprehensive support for this since we want to
avoid creating an extreme number of "if running in automation..."
codepaths that would increase the testing matrix and hurt maintainability.
The focus is specifically on the output of the three commands we give in
the automation guide, which at present means the following two situations:
* "terraform init" does not include the final paragraphs that suggest
running "terraform plan" and tell you in what situations you might need
to re-run "terraform init".
* "terraform plan" does not include the final paragraphs that either
warn about not specifying "-out=..." or instruct to run
"terraform apply" with the generated plan file.
The previous diff presentation was rather "wordy", and not very friendly
to those who can't see color either because they have color-blindness or
because they don't have a color-supporting terminal.
This new presentation uses the actual symbols used in the plan output
and tries to be more concise. It also uses some framing characters to
try to separate the different stages of "terraform plan" to make it
easier to visually navigate.
The apply command also adopts this new plan presentation, in preparation
for "terraform apply" (with interactive plan confirmation) becoming the
primary, safe workflow in the next major release.
Finally, we standardize on the terminology "perform" and "actions" rather
than "execute" and "changes" to reflect the fact that reading is now an
action and that isn't actually a _change_.
Previously the rendered plan output was constructed directly from the
core plan and then annotated with counts derived from the count hook.
At various places we applied little adjustments to deal with the fact that
the user-facing diff model is not identical to the internal diff model,
including the special handling of data source reads and destroys. Since
this logic was just muddled into the rendering code, it behaved
inconsistently with the tally of adds, updates and deletes.
This change reworks the plan formatter so that it happens in two stages:
- First, we produce a specialized Plan object that is tailored for use
in the UI. This applies all the relevant logic to transform the
physical model into the user model.
- Second, we do a straightforward visual rendering of the display-oriented
plan object.
For the moment this is slightly overkill since there's only one rendering
path, but it does give us the benefit of letting the counts be derived
from the same data as the full detailed diff, ensuring that they'll stay
consistent.
Later we may choose to have other UIs for plans, such as a
machine-readable output intended to drive a web UI. In that case, we'd
want the web UI to consume a serialization of the _display-oriented_ plan
so that it doesn't need to re-implement all of these UI special cases.
This introduces to core a new diff action type for "refresh". Currently
this is used _only_ in the UI layer, to represent data source reads.
Later it would be good to use this type for the core diff as well, to
improve consistency, but that is left for another day to keep this change
focused on the UI.
Forward-port the plan state check from the 0.9 series.
0.10 has improved the serial handling for the state, so this adds
relevant comments and some more test coverage for the case of an
incrementing serial during apply.
A common reason to want to use `terraform plan` is to have a chance to
review and confirm a plan before running it. If in fact that is the
only reason you are running plan, this new `terraform apply -auto-approve=false`
flag provides an easier alternative to
P=$(mktemp -t plan)
terraform refresh
terraform plan -refresh=false -out=$P
terraform apply $P
rm $P
The flag defaults to true for now, but in a future version of Terraform it will
default to false.
Rather than overloading InstanceDiff with a "Stub" attribute that is
going to be largely meaningless, we are just going to skip
pre/post-diff hooks altogether. This is under the notion that we will
eventually not need to "stub" a diff for scale-out, stateless nodes on
refresh at all, so diff behaviour won't be necessary at that point, so
we should not assume that hooks will run at this stage anyway.
Also as part of this removed the CountHook test that is now failing
because CountHook is out of scope of the new behaviour.
We are changing the behaviour of the "stub" diff operation to just have
the pre/post-diff hooks skipped on eval, meaning that the test against
CountHook will ultimately be meaningless and fail, hence we need a
different test here that tests it on a more general level.
During plan and apply, because the provider constraints need to be built
from a plan, they are not checked until the terraform.Context is
created. Since the context is always requested by the backend during the
Operation, the backend needs to be responsible for generating contextual
error messages for the user.
Instead of formatting the ResolveProviders errors during NewContext,
return a special error type, ResourceProviderError to signal that
init will be required. The backend can then extract and format the
errors.
Changed the language of this field to indicate that this diff is not a
"real" diff, in that it should not be acted on, versus a "quiet" mode,
which would indicate just simply to act silently.
This fixes a bug with the new refresh graph behaviour where a resource
was being counted twice in the UI on part of being scaled out:
* We are no longer transforming refresh nodes without state to
plannable resources (the transformer will be removed shortly)
* A Quiet flag has been added to EvalDiff and InstanceDiff - this
allows for the flagging of a diff that should not be treated as real
diff for purposes of planning
* When there is no state for a refresh node now, a new path is taken
that is similar to plan, but flags Quiet, and does nothing with the
diff afterwards.
Tests pending - light testing has confirmed this should fix the double
count issue, but we should have some tests to actually confirm the bug.
We're shifting terminology from "environment" to "workspace". This takes
care of some of the main internal API surface that was using the old
terminology, though is not intended to be entirely comprehensive and is
mainly just to minimize the amount of confusion for maintainers as we
continue moving towards eliminating the old terminology.
This allows you to run multiple concurrent terraform operations against
different environments from the same source directory.
Fixes#14447.
Also removes some dead code which appears to do the same thing as the function I
modified.
Rather than providing an already-resolved map of plugins to core, we now
provide a "provider resolver" which knows how to resolve a set of provider
dependencies, to be determined later, and produce that map.
This requires the context to be instantiated in a different way, so this
very noisy diff is a mostly-mechanical update of all of the existing
places where contexts get created for testing, using some adapted versions
of the pre-existing utilities for passing in mock providers.
This reverts commit b73d037761.
This commit seems to have introduced a race condition where we can
concurrently keep updating state after we've checked if we need to
increase the serial, and thus end up writing partial changes
to the state backend.
In the case of Terraform Enterprise, this fails altogether because
of the state hash consistency check it does.
When the backend operation is cancelled, immediately call PersistState.
The is a high likelihood that the user is going to terminate the process
early if the provider doesn't return in a timely manner, so persist as
much state as possible.