The hashing function for cached backend configuration is different now, so
our hard-coded hash of the HTTP backend address wasn't working anymore.
Here we update the hash so that tests using this test backend will work
again. Rather than leaving it hard-coded, we'll instead compute it the
same way as "terraform init" would.
In practice only one test is actually using this function right now, so
we also update the test fixture for that test (TestPlan_outBackend) to
match the new expectations, though as of this commit it's still failing
with an unrelated error.
Our serialization of the backend configuration has changed slightly for
Terraform 0.12 due to reimplementing it in terms of the HCL2 types, so
the base case that should be unchanged during the test needs to be
changed.
As part of some light reorganization of our commands, this new
implementation no longer does validation of variables and will thus avoid
the need to spin up a fully-valid context. Instead, its focus is on
validating the configuration itself, regardless of any variables, state,
etc.
This change anticipates us later adding a -validate-only flag to
"terraform plan" which will then take over the related use-case of
checking if a particular execution of Terraform is valid, _including_ the
state, variables, etc.
Although leaving variables out of validate feels pretty arbitrary today
while all of the variable sources are local anyway, we have plans to
allow per-workspace variables to be stored in the backend in future and
at that point it will no longer be possible to fully validate variables
without accessing the backend. The "terraform plan" command explicitly
requires access to the backend, while "terraform validate" is now
explicitly for local-only validation of a single module.
In a future commit this will be extended to do basic type checking of
the configuration based on provider schemas, etc.
Certain backends (currently only the `remote` backend) do not support using both the default and named workspaces at the same time.
To make the migration easier for users that currently use both types of workspaces, this commit adds logic to ask the user for a new workspace name during the migration process.
If users run "terraform import" in a directory with no Terraform
configuration files, it's likely that they've made a mistake either by
being in the wrong directory or forgetting to use the -config option
on the command line.
To help users find their mistake in this case, we'll now produce a
specialized error message for this situation:
Error: No Terraform configuration files
The directory /home/user/example does not contain any Terraform
configuration files (.tf or .tf.json). To specify a different
configuration directory, use the -config="..." command line option.
While here, this also converts some of the other existing messages to
diagnostics so that we can show any configuration warnings along with
the error message, and move towards the new standard error presentation.
As part of the 0.10 core/provider split we moved this provider, along with
all the others, out into its own repository.
In retrospect, the "terraform" provider doesn't really make sense to be
separated since it's just a thin wrapper around some core code anyway,
and so re-integrating it into core avoids the confusion that results when
Terraform Core and the terraform provider have inconsistent versions of
the backend code and dependencies.
There is no good reason to use a different version of the backend code
in the provider than in core, so this new "internal provider" mechanism
is stricter than the old one: it's not possible to use an external build
of this provider at all, and version constraints for it are rejected as
a result.
This provider is also run in-process rather than in a child process, since
again it's just a very thin wrapper around code that's already running
in Terraform core anyway, and so the process barrier between the two does
not create enough advantage to warrant the additional complexity.
Previously we were checking required_version only during "real" operations, and not during initialization. Catching it during init is better because that's the first command users run on a new working directory.
While the `local.Local` backend is the only implementation of
`backend.Local`, creating the backend with `ForceLocal` bypasses the
`backend.Backend` in the `local.Local` causing a local state to be
implicitly created rather than using the configured state backend.
Add a test that imports into a configured backend (using the "local"
backend as a remote state proxy). This further confirms the confusing
nature of ForceLocal, as the backend _is_ local, but not from the
viewpoint of meta.Backend.
Once we've installed the necessary plugins, we'll do one more walk of
the available plugins and record the SHA256 hashes of all of the plugins
we select in the provider lock file.
The file we write here gets read when we're building ContextOpts to
initialize the main terraform context, so any command that works with
the context will then fail if any of the provider binaries change.
Previously we encouraged users to import a resource and _then_ write the
configuration block for it. This ordering creates lots of risk, since
for various reasons users can end up subsequently running Terraform
without any configuration in place, which then causes Terraform to want
to destroy the resource that was imported.
Now we invert this and require a minimal configuration block be written
first. This helps ensure that the user ends up with a correlated resource
config and state, protecting against any inconsistency caused by typos.
This addresses #11835.
Previously we deferred validation of the resource address on the import
command until we were in the core guts, which caused the error responses
to be rather unhelpful.
By validating these things early we can give better feedback to the user.
This new command prints out the tree of modules annotated with their
associated required providers.
The purpose of this command is to help users answer questions such as
"why is this provider required?", "why is Terraform using an older version
of this provider?", and "what combination of modules is creating an
impossible provider version situation?"
For configurations using many modules this sort of question is likely to
come up a lot once we support versioned providers.
As a bonus use-case, this command also shows explicitly when a provider
configuration is being inherited from a parent module, to help users to
understand where the configuration is coming from for each module when
some child modules provide their own provider configurations.
We're going to use config to determine provider dependencies, so we need
to always provide a config when instantiating a context or we'll end up
loading no providers at all.
We previously had a test for running "terraform import -config=''" to
disable the config entirely, but this test is now removed because it makes
no sense. The actual functionality its testing still remains for now,
but it will be removed in a subsequent commit when we start requiring that
a resource to be imported must already exist in configuration.
Currently this doesn't matter much, but we're about to start checking the
availability of providers early on and so we need to use the correct name
for the mock set of providers we use in command tests, which includes
only a provider named "test".
Without this change, the "push" tests will begin failing once we start
verifying this, since there's no "aws" provider available in the test
context.
This method mirrors that of config.Backend, so we can compare the
configration of a backend read from a config vs that of a backend read
from a state. This will prevent init from reinitializing when using
`-backend-config` options that match the existing state.
The variable validator assumes that any AST node it gets from an
interpolation walk is an indicator of an interpolation. Unfortunately,
back in f223be15 we changed the interpolation walker to emit a LiteralNode
as a way to signal that the result is a literal but not identical to the
input due to escapes.
The existence of this issue suggests a bit of a design smell in that the
interpolation walker interface at first glance appears to skip over all
literals, but it actually emits them in this one situation. In the long
run we should perhaps think about whether the abstraction is right here,
but this is a shallow, tactical change that fixes#13001.
Fixes#12871
We were forgetting to remove the legacy remote state from the actual
state value when migrating. This only causes an issue when saving a plan
since the plan contains the state itself and causes an error where both
a backend + legacy state exist.
If saved plans aren't used this causes no noticable issue.
Due to buggy upgrades already existing in the wild, I also added code to
clear the remote section if it exists in a standard unchanged backend
When migrating from a multi-state backend to a single-state backend, we
have to ensure that our locally configured environment is changed back
to "default", or we won't be able to access the new backend.
This allows a refresh on a non-existent or empty state file. We changed
this in 0.9.0 to error which seemed reasonable but it turns out this
complicates automation that runs refresh since it now needed to
determine if the state file was empty before running.
Its easier to just revert this into a warning with exit code zero.
The reason this changed is because in 0.8.x and earlier, the output
would be simply empty with exit code zero which seemed odd.
Fixes#12749
If we merge in an extra partial config we need to recompute the hash to
compare with the old value to detect that change.
This hash needs to NOT be stored and just used as a temporary. We want
to keep the original hash in the state so that we don't detect a change
from the config (since the config will always be partial).