The SDK uses only the native int and float64 types internally for values
that are specified as being "number" in schema, so for SDK purposes only
a float64 level of precision is significant.
To avoid any weirdness introduced as we shim and un-shim numbers, we'll
reduce floating point numbers to float64 precision before comparing them
to try to mimic the result the SDK itself would've gotten from comparing
its own float64 versions of these values using the Go "==" operator.
This is a first pass of an "approximately equal" function that tries to
mimic the reduced precision caused by the field reader abstraction in
helper/schema so that we can distinguish between meaningful changes to
the proposed new state and incidental ones that just result from the loss
of precision in the SDK implementation.
This reverts commit 3677522a28.
Later changes negate the need for this, and removing these again
prevents us from having to strip them back out when helper/schema
doesn't want them.
If a flatmap value has a count of 1 and no other attributes, it usually
indicates the equivalent configuration of an empty (or default value)
set block. Treat this as containing a single zero value object and
insert that into the set.
The flatmap shim was lazily adding duplicate items and letting cty.Set
clear them out, but if those duplicates contains unknown values they
can't be checked for equality and will end up remaining in the set.
This is a more specialized version of ConfigValueFromHCL2 which is
specifically for config values that represent the content of a block
body in the configuration.
By using the schema of that block we can more precisely emulate the old
HCL1/HIL behaviors by distinguishing attributes from blocks and applying
some slightly different behaviors for the handling of null values and
of empty collections that are representing the absense of blocks of a
particular type.
Make the function work specifically how we need for RequiresReplace.
Skip index changes, any set changes are only recorded as the set itself,
and filter out duplicate paths.
Add a few more tests to check for various nested structures.
Rather than try and make a generalized path function here, what we
really need in a function to generate the paths needed for
RequiresReplace. This needs to take into account that sets elements
don't need to be indexed themselves, and changes to collection index
values aren't needed.
PathFromFlatmapKey is used to convert a flatmap key to a cty.Path, and
ensures it conforms to the type schema.
This is used when handling Diffs, where the ResourceAttrDiffs are
indexed by the flatmapped key values, and we need to convert those to
addresses to apply to a cty.Value.
When creating a flatmap from a cty.Value, there may be Null collections
which don't need to be added to the flatmap at all. Skip over these to
avoid panicking in ElementIterator with a Null value.
A nil flatmap will be encoded as a NullVal of the correct type. When
Converting a NullVal back to a flatmap, return nil immediately rather
than attempting to build the values.
Previously unknown values were round-tripping through flatmap and coming
out as known strings containing the UnknownVariableValue. (The classic bug
that, ironically, was one of the big reasons to write cty!)
Now we properly handle unknown values in both directions: going in to
flatmap we write UnknownVariableValue at the appropriate key (as the count
for sequences or maps) and then coming out of flatmap we turn
UnknownVariableValue back into a cty unknown value of the requested type.
These particular shims will have a pretty limited lifetime in mainline
Terraform code (primarily to stub out the new expression evaluator against
the old state structs until the new format is implemented) but will live
on for some time in state migration and provider plugin compatibility
shims.
Absent values are omitted by the old code we are emulating in HCL, so we
must do the same here in order to avoid breaking assumptions in the
helper/schema layer.
The value-conversion machinery is also needed in the main "terraform"
package to help us populate our HCL2 evaluation scope, so a subset of the
shim functions move here into a new package where they can be public.
Some of them remain private within the config package since they depend
on some other symbols in the config package, and they are not needed
by outside callers anyway.