This is under a heading "Sensitive Resource Attributes" on the assumption
that if we later stabilize this feature then this heading will live on
with some different content that describes the propagation of sensitive
values from resource attributes, rather than describing the experiment.
The resources, expressions, and modules pages were all split into smaller, more
navigable pages, but the old URLs had accumulated a large number of deep links
to their section headers. To help people recover when they click an old link, we
converted those old URLs to landing pages, which preserve all of the old in-page
anchors and point readers to the appropriate new destinations.
However, because the new link-to-new-page sections are so small, it was kind of
hard to tell which section you had clicked into! Especially if you were near the
bottom of the page and the browser wasn't able to position the desired section
at the very top of the window.
This commit aims to improve that by putting one full screen of whitespace in
between every linkable section on these landing pages. Yes, it's a hack, but
you're meant to only view these pages for three seconds or so before moving on
to the place you wanted to be, and this should help dispel any confusion about
which place that is.
This tutorial uses references to local values, conditional expressions,
and splat expressions, so I've added it to those pages as well as the
expressions overview.
The default cli Warn calls always write to the error writer (stderr by
default), however the output is intended to be viewed in the UI by the
user, rather than in a separate stream. Terraform also generally does
not consider warnings to be errors from the cli point of view, and does
not need to output the warning text to stderr.
By redirecting Warn calls to Output calls at the lowest level in the
main package, we can eliminate the chance that Warn and Output
messages are interleaved, while still allowing the internal `cli.Ui`
implementations to format `Warn` and `Output` calls separately.
The console and output formatter previously displayed multi-line strings
with escaped newlines, e.g. `"hello\nworld\n"`. While this is a valid
way to write the HCL string, it is not as common or as readable as using
the heredoc syntax, e.g.
<<EOF
hello
world
EOF
This commit adds heredoc detection and display to this formatter,
including support for indented heredocs for nested multi-line strings.
This change affects the apply, console, and output sub-commands.
We've historically made statements like this in response to requests for
more customization to the "terraform fmt" behavior, but the documentation
itself was somewhat vague about the intended goals of this command.
This is an attempt to be more explicit that consistency between codebases
is the primary goal of this command, and that the examples in the
Terraform documentation are our main guide for what is "idiomatic style"
when adding additional rules over time.
Nothing here is intended to be new policy, but instead as codifying
positions we've taken elsewhere in the past in the hope of allowing users
to decide how (and whether) they wish to make use of this tool.
The temporary directory on some systems (most notably MacOS) contains
symlinks, which would not be recorded by the installer. In order to make
these paths comparable in the tests we need to eval the symlinks in
the paths before giving them to the installer.
Unmark values before calling provider's validate
function, this was not tested as the mock
provider does not use Marshall. Update mock
provider funcs to marshall and error if there
was an error in marshalling
Along with all of the other information we previously reported in the
"terraform version" output, we'll now include the name of the current
platform as our provider mechanisms represent it.
This is addressing a long-standing minor annoyance where we often can't
tell from an incomplete bug report which platform Terraform was running
on, and incomplete bug reporters do tend to at least include the
"terraform version" output even if they don't also include the requested
full trace log.
However, what motivated doing it _now_ is that anyone building a provider
registry or mirror needs to have some awareness of these platform
identifiers which have been, until v0.13, mostly an implementation detail.
This additional information is a small thing we can do to help registry
builders find out what the platform identifier ought to be for each of
the platforms they aim to support, even if some of them are platforms
which the Go compiler allows but which HashiCorp doesn't officially
support.
The new information is on a line of its own in the output as a pragmatic
way to avoid breaking anyone who might be using something like
$(terraform version | head -n1) to print a brief Terraform version
identifier into some logs. That's not an interface we officially support
for machine consumption, but it's easy to avoid breaking it here and so we
won't do so.
When using the enhanced remote backend, a subset of all Terraform
operations are supported. Of these, only plan and apply can be executed
on the remote infrastructure (e.g. Terraform Cloud). Other operations
run locally and use the remote backend for state storage.
This causes problems when the local version of Terraform does not match
the configured version from the remote workspace. If the two versions
are incompatible, an `import` or `state mv` operation can cause the
remote workspace to be unusable until a manual fix is applied.
To prevent this from happening accidentally, this commit introduces a
check that the local Terraform version and the configured remote
workspace Terraform version are compatible. This check is skipped for
commands which do not write state, and can also be disabled by the use
of a new command-line flag, `-ignore-remote-version`.
Terraform version compatibility is defined as:
- For all releases before 0.14.0, local must exactly equal remote, as
two different versions cannot share state;
- 0.14.0 to 1.0.x are compatible, as we will not change the state
version number until at least Terraform 1.1.0;
- Versions after 1.1.0 must have the same major and minor versions, as
we will not change the state version number in a patch release.
If the two versions are incompatible, a diagnostic is displayed,
advising that the error can be suppressed with `-ignore-remote-version`.
When this flag is used, the diagnostic is still displayed, but as a
warning instead of an error.
Commands which will not write state can assert this fact by calling the
helper `meta.ignoreRemoteBackendVersionConflict`, which will disable the
checks. Those which can write state should instead call the helper
`meta.remoteBackendVersionCheck`, which will return diagnostics for
display.
In addition to these explicit paths for managing the version check, we
have an implicit check in the remote backend's state manager
initialization method. Both of the above helpers will disable this
check. This fallback is in place to ensure that future code paths which
access state cannot accidentally skip the remote version check.
The remote backend tests spent most of their execution time sleeping in
various polling and backoff waits. This is unnecessary when testing
against a mock server, so reduce all of these delays when under test to
much lower values.
Only one remaining test has an artificial delay: verifying the discovery
of services against an unknown hostname. This times out at DNS
resolution, which is more difficult to fix than seems worth it at this
time.
Previously Terraform would react to an invalid top-level command the same
way as for typing no command at all: just printing out the long top-level
help directory.
If someone's tried to type a command, it's more helpful to respond to that
request by explaining directly that the command is invalid, rather than
leaving the user to puzzle that out themselves by referring to the help
text.
As a bonus, this also allows us to use our "didyoumean" package to suggest
possible alternatives if it seems like the user made a typo.
The Registry is a web service whose behavior isn't directly tied to Terraform
core's release cycle; therefore, its docs should be decoupled from that release
cycle as well.
https://github.com/hashicorp/terraform-website/pull/1517 adopts the registry
docs into hashicorp/terraform-website, which already hosts several other
corpuses of documentation that aren't tied to Terraform core's version (like
Terraform Cloud, Terraform Enterprise, and Extending Terraform). Once that PR is
merged, we should remove the registry docs from this repository to avoid
confusing anyone.
Terraform considers backend configurations only in the root module, so any
declarations in child modules are entirely ignored.
To avoid users mistakenly thinking that a root module backend
configuration has taken effect, we'll now emit a warning about it. This is
a warning rather than an error because it's reasonable to call a module
that would normally be a root module instead as a child module when
writing a wrapper module to handle integration testing.
The local-exec provisioner documentation includes an example which refers
to an attribute of the current resource using its full traversal path,
rather than using "self" as we typically expect.
Due to some coincidences in how Terraform builds the dependency graph,
referring to the resource in this way happens to work when the resource
has only a single instance (the graph builder just skips that
self-referential dependency edge), but it fails if the user later tries
to add "count" or "for_each" to the resource, because at that point all
of the instances become dependent on one another, which creates a
dependency cycle.
Using "self" to access the current instance attributes is the usual
approach, so I've updated the documentation to show that.