With the introduction of explicit "null" in 0.12 it's possible for a value
that is unknown during plan to become a known null during apply, so we
need to slightly weaken our validation rules to accommodate that, in
particular skipping the validation of conflicting attributes if the result
could potentially be valid after the unknown values become known.
This change is in the codepath that is common to both 0.12 and 0.11
callers, but that's safe because 0.11 re-runs validation during the apply
step and so will still catch problems here, albeit in the apply step
rather than in the plan step, thus matching the 0.12 behavior. This new
behavior is a superset of the old in the sense that everything that was
valid before is still valid.
The implementation here also causes us to skip all other validation for
an attribute whose value is unknown. Most of the downstream validation
functions handle this directly anyway, but again this doesn't add any new
failure cases, and should clean up some of the rough edges we've seen with
unknown values in 0.11 once people upgrade to 0.12-compatible providers.
Any issues we now short-circuit during planning will still be caught
during apply.
While working on this I found that the existing "Not a list" test was not
actually testing the correct behavior, so this also includes a tweak to
that to ensure that it really is checking the "should be a list" path
rather than the "cannot be set" codepath it was inadvertently testing
before.
This causes the output to include additional helpful context such as
the values of variables referenced in the config, etc. The output is in
the same format as normal Terraform CLI error output, though we don't
retain a source code cache in this codepath so it will not include a
source code snippet.
Previously the test harness was preloading schemas from the providers
before running any test steps.
Since terraform.NewContext already deals with loading provider schemas,
we can instead just use the schemas it loaded for our shimming needs,
avoiding the need to reimplement the schema lookup behavior and thus
the need to create a throwaway provider instance with which to do it.
Previously we were running the factory function only once when
constructing the provider resolver, which means that all contexts created
from that resolver share the same provider instance.
Instead now we will call the given factory function once for each
instantiation, ensuring that each caller ends up with a separate object
as would be the case in real-world use.
The added test in this commit, without the fix, will make d.Set return
the following error:
`Invalid address to set: []string{"ports", "0", "set"}`
This was due to the fact that setSet in feild_writer_map tried to
convert a slice into a set by creating a temp set schema and calling
writeField on that with the address(`[]string{"ports", "0", "set"}"` in
this case). However the temp schema was only for the set and not the
whole schema as seen in the address so, it should have been `[]string{"set"}"`
so it would align with the schema.
This commits adds another variable there(tempAddr) which will only
contain the last entry of the address that would be the set key, which
would match the created schema
This commit potentially fixes the problem described in #16331
Any state modifying functions can only be run once during the plan-apply
cycle. When regenerating the Diff during ApplyResourceChange, strip out
all StateFunc and CustomizeDiff functions from the schema.
Thew NewExtra diff field was where config data that was modified by a
StateFunc was stored, and needs to be maintained between plan and apply.
During PlanResourceChange, store any NewExtra data from the Diff in the
PlannedPrivate data, and re-insert the NewExtra data into the Diff
generated during ApplyResourceChange.
Errors were being ignore with the intention that they would be caught
later in validation, but it turns out we nee dto catch those earlier.
The legacy schemas also allowed providers to set and empty string for a
bool value, which we need to handle here, since it's not being handled
from user input like a normal config value.
The rest of Terraform is still using uint64 for this in various spots, but
we'll update that gradually later. We use int64 here because that matches
what's used in our protobuf definition, and unsigned integers are not
portable across all of the protobuf target languages anyway.
When normalizing flatmapped containers, compare the attributes to the
prior state and preserve pre-existing zero-length or unknown values. A
zero-length value that was previously unknown is preserved as a
zero-length value, as that may have been computed as such by the
provider.
Since the SDK's schema system conflates attributes and nested blocks, it's
possible to state some nonsensical schema situations such as:
- A nested block is both optional but has MinItems > 0
- A nested block is entirely computed but has MinItems or MaxItems set
Both of these weird situations are handled here in the same way that the
existing helper/schema validation code would've handled them: by
effectively disabling the MinItems/MaxItems checks where they would've
been ignored before.
the MinItems/MaxItems
The SDK has a mechanism that effectively makes it possible to declare an
attribute as being _conditionally_ required, which is not a concept that
Terraform Core is aware of.
Since this mechanism is in practice only used for a small UX improvement
in prompting for these values interactively when the environment variable
is not set, we avoid here introducing all of this complexity into the
plugin protocol by just having the provider selectively modify its schema
if it detects that such an attribute might be set dynamically.
This then prevents Terraform Core from validating the presence of the
argument or prompting for a new value for it, allowing the null value to
pass through into the provider so that the default value can be generated
again dynamically.
This is a kinda-kludgey solution which we're accepting here because the
alternative would be a much-more-complex two-pass decode operation within
Core itself, and that doesn't seem worth it.
This fixes#19139.
The main significant change here is that the package name for the proto
definition is "tfplugin5", which is important because this name is part
of the wire protocol for references to types defined in our package.
Along with that, we also move the generated package into "internal" to
make it explicit that importing the generated Go package from elsewhere is
not the right approach for externally-implemented SDKs, which should
instead vendor the proto definition they are using and generate their
own stubs to ensure that the wire protocol is the only hard dependency
between Terraform Core and plugins.
After this is merged, any provider binaries built against our
helper/schema package will need to be rebuilt so that they use the new
"tfplugin5" package name instead of "proto".
In a future commit we will include more elaborate and organized
documentation on how an external codebase might make use of our RPC
interface definition to implement an SDK, but the primary concern here
is to ensure we have the right wire package name before release.
In order to prevent mismatched states between read/plan/apply, we need
to ensure that the attributes are generated consistently each time.
Because of the various ways in which helper/schema and the hcl2 shims
interpret empty values, the only way to ensure consistency is to always
remove them altogether.
This makes sure the diff is generated with the matching set ids from
helper/schema.
Update the tests to add ID fields to the state, which will exists in
practice, since any state traversing through the shims will have the ID
inserted.
helper/schema will remove "timeouts" from the config, and stash them in
the diff.Meta map. Terraform sees "timeouts" as a regular config block,
so needs them to be present in the state in order to not show a diff.
Have the GRPCProviderServer shim copy all timeout values into any state
it returns to provide consistent diffs in core.
Resource timeouts were a separate config block, but did not exist in the
resource schema. Insert any defined timeouts when generating the
configshema.Block so that the fields can be accepted and validated by
core.
`Any()` allows any single passing validation of multiple `SchemaValidateFunc` to pass validation to cover cases where a standard validation function does not cover the functionality or to make error messaging simpler.
Example provider usage:
```go
ValidateFunc: validation.Any(
validation.IntAtLeast(42),
validation.IntAtMost(5),
),
```
`All()` combines the outputs of multiple `SchemaValidateFunc`, to reduce the usage of custom validation functions that implement standard validation functions.
Example provider usage:
```go
ValidateFunc: validation.All(
StringLenBetween(5, 42),
StringMatch(regexp.MustCompile(`[a-zA-Z0-9]+`), "value must be alphanumeric"),
),
```
`IntInSlice()` is the `int` equivalent of `StringInSlice()`
Example provider usage:
```go
ValidateFunc: validation.IntInSlice([]int{30, 60, 120})
```
Output from unit testing:
```
$ make test TEST=./helper/validation
==> Checking that code complies with gofmt requirements...
go generate ./...
2018/10/17 14:16:03 Generated command/internal_plugin_list.go
go list ./helper/validation | xargs -t -n4 go test -timeout=2m -parallel=4
go test -timeout=2m -parallel=4 github.com/hashicorp/terraform/helper/validation
ok github.com/hashicorp/terraform/helper/validation 1.106s
```
The helper/resource unit tests will panic, because they were using the
legacy terraform.MockResourceProvider, which doesn't have the same
internals required by the new GRPC shims.
Fail these tests for now, and a new test provider will need to be made
out of a schema.Provider instance.
Use the new SimpleDiff method of the provider so that the diff isn't
altered by ForceNew attributes.
Always set an "id" as RequiresReplace so core knows an instance will be
replaced, even if all ForceNew attributes are filtered out due to
ignore_changes.
Terraform now handles any actual "diffing" of resource, and the existing
Diff functions are only used to shim the schema.Provider to the new
methods. Since terraform is handling what used to be the Diff, the
provider now should not modify the diff based on RequiresNew due to it
interfering with the ignore_changes handling.
While the schema Diff fucntion returns a nil diff when creating an empty
(except for id) resource, the Apply function expects the diff to be
initialized and ampty.
PlanResourceChange isn't returning the diff, but rather it is returning
the destired state. If the propsed state results in a nil diff, then,
the propsed state is what should be returned.
Make sure Meta fields are not nil, as the schema package expects those
to be initialised.
An earlier change introduced a new function testConfig to the main code
for this package, which conflicted with a function of the same name in
the test code.
Here we rename the function from the test code, allowing for the more
generally-named testConfig to be the one in the main code.
The "id" field is assumed to always exist, and must have a valid value.
Set "id" to unknown when planning new resource changes to indicate that
it will be computed.
Previously we just left these out of the plan altogether, but in the new
plan types we intentionally include change information for every resource
instance, even if no changes are actually planned, to allow alternative
plan file viewers to show what isn't changing as well as what is.
Managing which function need to be shared between the terraform plugin
and the helper plugin without creating cycles was becoming difficult.
Move all functions related to converting between terraform and proto
type into plugin/convert.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
The new helper/plugin package contains the grpc servers for handling the
new plugin protocol
The GRPCProviderServer and GRPCProvisionerServer handle the grpc plugin
protocol, and convert the requests to the legacy schema.Provider and
schema.Provisioner methods.
In order to not require state migrations to be supported in both
MigrateState and StateUpgraders, the legacy provider codepath needs to
handle the StateUpgraders transparently during Refresh.
This adds some of the required shim functions to the schema package.
While this further bloats the already huge package, adding the helpers
here was significantly less disruptive than refactoring types into
separate packages to prevent import cycles.
The majority of tests here are directly adapted from existing schema
tests to provide as many known good values to the shims as possible.
It turns out that state upgrades need to be handled differently since
providers are going to be backwards compatible. This means that new
state upgrades may still be stored in the flatmap format when used wih
terraform 0.11. Because we can't account for the specific version which
could produce a legacy state, all future state upgrades need to record
the schema types for decoding.
Rather than defining a single Upgrade function for states, we now have a
list of functions, each of which handle upgrading a specific version to
the next. In practice this isn't much different from the way many
resources implement upgrades themselves, with a separate function for
each version dispatched from the MigrateState function. The only added
burden is the recording of the schema type, and we intend to supply
tools and helper function to prevent the need to copy the entire
existing schema in all cases.
This is the provider-side UpgradeState implementation for a particular
resource. This new function will be called to upgrade a saved state with
an old schema version to the current schema.
UpgradeState also requires a record of the last schema and version that
could have been stored as a flatmapped state. If the stored state is in
the legacy flatmap format, this will allow the provider to properly
decode the flatmapped state into the expected structure for the new json
encoded state. If the stored state's version is below that of the
LegacySchema.Version value, it will first be processed by the legacy
MigrateState function.
The update protocol shims will also check for this this, but eventually
"id" will only be a normal attribute, and we shouldn't have to special
case this.
When converting a legacy schemaMap to a configschema, we need to add
"id" as a required attribute to top-level resources if it's not
declared.
The "id" field will be required to interoperate with the legacy helper
schema, since the presence of an id was used to indicate the existence
of a resource.
The "config" package is no longer used and will be removed as part
of the 0.12 release cleanup. Since configschema is part of the
"new world" of configuration modelling, it makes more sense for
it to live as a subdirectory of the newer "configs" package.
Due to how deeply the configuration types go into Terraform Core, there
isn't a great way to switch out to HCL2 gradually. As a consequence, this
huge commit gets us from the old state to a _compilable_ new state, but
does not yet attempt to fix any tests and has a number of known missing
parts and bugs. We will continue to iterate on this in forthcoming
commits, heading back towards passing tests and making Terraform
fully-functional again.
The three main goals here are:
- Use the configuration models from the "configs" package instead of the
older models in the "config" package, which is now deprecated and
preserved only to help us write our migration tool.
- Do expression inspection and evaluation using the functionality of the
new "lang" package, instead of the Interpolator type and related
functionality in the main "terraform" package.
- Represent addresses of various objects using types in the addrs package,
rather than hand-constructed strings. This is not critical to support
the above, but was a big help during the implementation of these other
points since it made it much more explicit what kind of address is
expected in each context.
Since our new packages are built to accommodate some future planned
features that are not yet implemented (e.g. the "for_each" argument on
resources, "count"/"for_each" on modules), and since there's still a fair
amount of functionality still using old-style APIs, there is a moderate
amount of shimming here to connect new assumptions with old, hopefully in
a way that makes it easier to find and eliminate these shims later.
I apologize in advance to the person who inevitably just found this huge
commit while spelunking through the commit history.
The new config loader requires some steps to happen in a different
order, particularly in regard to knowing the schema in order to
decode the configuration.
Here we lean directly on the configschema package, rather than
on helper/schema.Backend as before, because it's generally
sufficient for our needs here and this prepares us for the
helper/schema package later moving out into its own repository
to seed a "plugin SDK".
We will need access to this information in order to render interactive
input prompts, and it will also be useful in returning schema information
to external tools such as text editors that have autocomplete-like
functionality.