There are a few constructs from 0.11 and prior that cause 0.12 parsing to
fail altogether, which previously created a chicken/egg problem because
we need to install the providers in order to run "terraform 0.12upgrade"
and thus fix the problem.
This changes "terraform init" to use the new "early configuration" loader
for module and provider installation. This is built on the more permissive
parser in the terraform-config-inspect package, and so it allows us to
read out the top-level blocks from the configuration while accepting
legacy HCL syntax.
In the long run this will let us do version compatibility detection before
attempting a "real" config load, giving us better error messages for any
future syntax additions, but in the short term the key thing is that it
allows us to install the dependencies even if the configuration isn't
fully valid.
Because backend init still requires full configuration, this introduces a
new mode of terraform init where it detects heuristically if it seems like
we need to do a configuration upgrade and does a partial init if so,
before finally directing the user to run "terraform 0.12upgrade" before
running any other commands.
The heuristic here is based on two assumptions:
- If the "early" loader finds no errors but the normal loader does, the
configuration is likely to be valid for Terraform 0.11 but not 0.12.
- If there's already a version constraint in the configuration that
excludes Terraform versions prior to v0.12 then the configuration is
probably _already_ upgraded and so it's just a normal syntax error,
even if the early loader didn't detect it.
Once the upgrade process is removed in 0.13.0 (users will be required to
go stepwise 0.11 -> 0.12 -> 0.13 to upgrade after that), some of this can
be simplified to remove that special mode, but the idea of doing the
dependency version checks against the liberal parser will remain valuable
to increase our chances of reporting version-based incompatibilities
rather than syntax errors as we add new features in future.
* command/show: added test scaffold for json output
More test cases will be added once the basic shape of the tests is
validated.
- command/json* packages now sort resources by address, matching
behavior elsewhere
- using cmp in tests instead of reflect.DeepEqual for the diffs
- updating expected output in tests to match sorting
Previously we were doing this rather inconsistently: some commands would
do it and others would not. By doing it here we ensure we always apply the
same normalization, regardless of which operation we're running.
This normalization is mostly for cosmetic purposes in error messages, but
it also ends up being used to populate path.module and path.root and so
it's important that we always produce consistent results here so that
we don't produce flappy changes as users work with different commands.
The fact that thus mutates a data structure as a side-effect is not ideal
but this is the best place to ensure it always gets applied without doing
any significant refactoring, since everything after this point happens in
the backend package where the normalizePath method is not available.
* command/show: adding functions to aid refactoring
The planfile -> statefile -> state logic path was getting hard to follow
with blurry human eyes. The getPlan... and getState... functions were
added to help streamline the logic flow. Continued refactoring may follow.
* command/show: use ctx.Config() instead of a config snapshot
As originally written, the jsonconfig marshaller was getting an error
when loading configs that included one or more modules. It's not clear
if that was an error in the function call or in the configloader itself,
but as a simpler solution existed I did not dig too far.
* command/jsonplan: implement jsonplan.Marshal
Split the `config` portion into a discrete package to aid in naming
sanity (so we could have for example jsonconfig.Resource instead of
jsonplan.ConfigResource) and to enable marshaling the config on it's
own.
Older versions of terraform could save the backend hash number in a
value larger than an int.
While we could conditionally decode the state into an intermediary data
structure for upgrade, or detect the specific decode error and modify
the json, it seems simpler to just decode into the most flexible value
for now, which is a uint64.
A lot of commands used `c.Meta.flagSet()` to create the initial flagset for the command, while quite a few of them didn’t actually use or support the flags that are then added.
So I updated a few commands to use `flag.NewFlagSet()` instead to only add the flags that are actually needed/supported.
Additionally this prevents a few commands from using locking while they actually don’t need locking (as locking is enabled as a default in `c.Meta.flagSet()`.
Next to adding the locking for the `state push` command, this commit also fixes a small bug where the lock would not be propertly released when running the `state show` command.
And finally it renames some variables in the `[un]taint` code in order to try to standardize the var names of a few frequently used variables (e.g. statemgr.Full, states.State, states.SyncState).
In a couple places in tests we execute a child "go build" to make a helper
program. Now that we're running in module mode, "go build" will normally
default to downloading and caching dependencies, which we don't want
because we're still using vendoring for the moment.
Therefore we need to instruct these child builds to use vendoring too,
avoiding the need to download all of the dependencies and ensuring that
we'll be building with the same dependencies that we'd use for a normal
build.
Several of these tests rely on external services (e.g. Terraform Registry)
that have not yet been updated to support the needs of Terraform v0.12.0,
so for now we'll skip all of these tests and wait until those systems have
been updated.
This should be removed before Terraform v0.12.0 final to enable these
tests to be used as part of pre-release smoke testing.
The local filesystem state manager no longer creates backup files eagerly,
instead creating them only if on first write there is already a snapshot
present in the target file.
Therefore for this test to exercise the codepaths it intends to we must
create an initial state snapshot for it to overwrite, creating the backup
in the process.
There are several other tests for this behavior elsewhere, so this test
is primarily to verify that the refresh command is configuring the backend
appropriately to get the backups written in the desired location.
We now only create a backup state file if the given output file already
exists, which it does not in this test.
(The behavior of creating the backup files is already covered by other
tests, so no need for this one go out of its way to do it.)
We now don't create a local state backup until the first snapshot write,
so we don't expect there to be a backup file until the end of the test.
(There is already a check at the end there, unmodified by this change.)
The filesystem backend has the option of using a different file for its
initial read.
Previously we were incorrectly writing the contents of that file out into
the backup file, rather than the prior contents of the output file. Now
we will always read the output file in RefreshState in order to decide
what we will back up but then we will optionally additionally read the
input file and prefer its content as the "current" state snapshot.
This is verified by command.TestMetaBackend_planLocalStatePath and
TestMetaBackend_configureNew, which are both now passing.
The changes to how we handle setting the state path on the local backend
broke the heuristic we were using here for detecting migration from one
local backend to another with the same state path, which would by default
end up deleting the state altogether after migration.
We now use the StatePaths method to do this, which takes into account
both the default values and any settings that have been set.
Additionally this addresses a flaw in the old method which could
potentially have deleted all non-default workspace state files if the
"path" setting were changed without also changing the "workspace_dir"
setting. This new approach is conservative because it will preserve all
of the files if any one overlaps.
In an earlier change we fixed the "backendFromConfig" codepath to be
able to properly detect changes to the -backend-config arguments during
"terraform init", but this detection is too strict for the normal case
of running an operation in a previously-initialized directory.
Before any of the recent changes, the logic here was to selectively update
the hash to include -backend-config settings in the init case. Since
that late hash recalculation was confusing, here we take the alternative
path of using the hash only in the normal case and full value comparison
in the init case. Treating both of these cases separately makes things
marginally easier to follow here.
The import command was imposing the default state path at the CLI level,
rather than leaving that to be handled by the backend. As a result, the
output state was always forced to be terraform.tfstate, regardless of
the backend settings.
This test is testing some strange implementation details of the old
local backend which do not hold with the new filesystem state manager.
Specifically, it was expecting state to be read from the stateOutPath
rather than the statePath, which makes no sense here because the backend
is configured to read from the default terraform.tfstate file (which does
not exist.)
There is another problem with this test which will be addressed in a
subsequent commit.
As part of integrating the new "remote" backend we relaxed the requirement
that a "default" workspace must exist in all backends and now skip
migrating empty workspace states to avoid creating unnecessary "default"
workspaces when switching between backends that require it and backends
that don't, such as when switching from the local backend (which always
has a "default" workspace) to Terraform Enterprise.
This was failing because we now handle the settings for the local backend
a little differently as a result of decoding it with the HCL2 machinery.
Specifically, the backend.State* fields are now assumed to be what is
given in configuration, and any CLI overrides are maintained separately
in OverrideState* fields so that they can be imposed "just in time" in
StatePaths.
This is particularly important because OverrideStatePath (when set) is
used regardless of workspace name, while StatePath is a suitable value
only for the "default" workspace, with others needing to be constructed
from StateWorkspaceDir instead.
Our new state model has a different implementation of "empty" that doesn't
consider lineage/serial, so we need to have some actual content in these
state fixtures to avoid them being skipped during state migrations.