It makes for sense for this to happen in State.prune(). Also move a
redundant pruning from ResourceState.init, and make sure
ResourceState.prune is called from the parent's prune method.
This doesn't cause any practical issues as far as I'm aware (couldn't
get any test to fail), but caused shadow errors since it wasn't matching
the prior behavior.
Fixes#10122
The simple fix was that we forgot to close `ReadDataApply` for the
provider. But I've always felt that this section of the code was brittle
and I wanted to put in a more robust solution. The `shadow.Close` method
uses reflection to automatically close all values.
People with `uuid()` usage in their configurations would receive shadow
errors every time on plan because the UUID would change.
This is hacky fix but I also believe correct: if a shadow error contains
uuid() then we ignore the shadow error completely. This feels wrong but
I'll explain why it is likely right:
The "right" feeling solution is to create deterministic random output
across graph runs. This would require using math/rand and seeding it
with the same value each run. However, this alone probably won't work
due to Terraform's parallelism and potential to call uuid() in different
orders. In addition to this, you can't seed crypto/rand and its unlikely
that we'll NEVER use crypto/rand in the future even if we switched
uuid() to use math/rand.
Therefore, the solution is simple: if there is no shadow error, no
problem. If there is a shadow error and it contains uuid(), then ignore
it.
The method marks the start of a set of operations on the Graph, with
extra information optionally provided in the second paramter. This
returns a function with a single End method to mark the end of the set
in the logs.
Refactor the existing graph Begin/End Operation calls to use this single
method. Remove the *string types in the marshal structs, these are
strictly informational and don't need to differentiate empty vs unset
strings.
Add calls to DebugOperation for each step while building the graph.
To maintain the same output, the Graph.Dot implementation needs to be
aware of GraphNodeDotter. Copy the interface into the dag package, and
make the Dot marshaler aware of which nodes implemented the interface.
This way we can remove most of the remaining dot code from terraform.
The dot format generation was done with a mix of code from the terraform
package and the dot package. Unify the dot generation code, and it into
the dag package.
Use an intermediate structure to allow a dag.Graph to marshal itself
directly. This structure will be ablt to marshal directly to JSON, or be
translated to dot format. This was we can record more information about
the graph in the debug logs, and provide a way to translate those logged
structures to dot, which is convenient for viewing the graphs.
This fixes: `TestContext2Apply_moduleDestroyOrder`
The new destroy graph wasn't properly creating edges that happened
_through_ an output, it was only created the edges for _direct_
dependents.
To fix this, the DestroyEdgeTransformer now creates the full transitive
list of destroy edges by walking all ancestors. This will create more
edges than are necessary but also will no longer miss resources through
an output.
This will detect computed counts (which we don't currently support) and
change the error to be more informative that we don't allow computed
counts. Prior to this, the error would instead be something like
`strconv.ParseInt: "${var.foo}" cannot be parsed as int`.
This turns the new graphs on by default and puts the old graphs behind a
flag `-Xlegacy-graph`. This effectively inverts the current 0.7.x
behavior with the new graphs.
We've incubated most of these for a few weeks now. We've found issues
and we've fixed them and we've been using these graphs internally for
awhile without any major issue. Its time to default them on and get them
part of a beta.
Because we now rely on HIL to do the computed calculation, we must make
sure the type is correct (TypeUnknown). Before, we'd just check for the
UUID in the string.
This changes all variable returns in the interpolater to run it through
`hil.InterfaceToVariable` which handles this lookup for us.
This uses the new NodeApplyableProvider graph nodes. This will just make
it easier for us in the future to adopt new graph transforms by starting
to use the new ones here.
The primary change here is to expect that Config contains computed
values. This introduces `unknownCheckWalker` that does a really basic
reflectwalk to look for computed values and use that for IsComputed.
We had a weird mixture before checking whether c.Config was simply
missing values to determine where to look. Now we rely on IsComputed
heavily.