A very common question since we launched the two repetition constructs
is how to deal with situations where the input data structure doesn't
match one-to-one with the desired configuration.
This adds some full worked examples of two common situations that have
come up in questions. To avoid adding a lot of extra content to the
already-large "expressions" and "resources" pages, the main bulk of this
new content lives with the relevant functions themselves as a full example
of one thing they are good for, and then we'll link to them from the two
general documentation sections where folks are likely to be reading when
they encounter the problem.
Previously we were using the experimental HCL 2 repository, but now we'll
shift over to the v2 import path within the main HCL repository as part of
actually releasing HCL 2.0 as stable.
This is a mechanical search/replace to the new import paths. It also
switches to the v2.0.0 release of HCL, which includes some new code that
Terraform didn't previously have but should not change any behavior that
matters for Terraform's purposes.
For the moment the experimental HCL2 repository is still an indirect
dependency via terraform-config-inspect, so it remains in our go.sum and
vendor directories for the moment. Because terraform-config-inspect uses
a much smaller subset of the HCL2 functionality, this does still manage
to prune the vendor directory a little. A subsequent release of
terraform-config-inspect should allow us to completely remove that old
repository in a future commit.
The cidrsubnets function signature is intentionally very low-level and
focused on the core requirement of generating addresses. This registry
module then wraps it with some additional functionality to make it more
convenient to generate and use subnet address ranges.
This is a companion to cidrsubnet that allows bulk-allocation of multiple
subnet addresses at once, with automatic numbering.
Unlike cidrsubnet, cidrsubnets allows each of the allocations to have a
different prefix length, and will pack the networks consecutively into the
given address space. cidrsubnets can potentially create more complicated
addressing schemes than cidrsubnet alone can, because it's able to take
into account the full set of requested prefix lengths rather than just
one at a time.
* command/import: properly use `-provider` supplied on the command line
The import command now attaches the provider configuration in the resource
instance, if set. That config is attached to the NodeAbstractResource
during the import graph building. This prevents errors when the implied
provider is not actually in the configuration at all, which may happen
when a configuration is using the `-beta` version of a provider (and
only that `-beta` version).
* command/import: fix variable reassignment and update docs
Fixes#22564
For a long time now we've been advising against the use of provisioners,
but our documentation for them is pretty prominent on the website in
comparision to the better alternatives, and so it's little surprise that
many users end up making significant use of them.
Although in the longer term a change to our information architecture would
probably address this even better, this is an attempt to be explicit about
the downsides of using provisioners and to prominently describe the
alternatives that are available for common use-cases, along with some
reasons why we consider them to be better.
I took the unusual step here of directly linking to specific provider
documentation pages about the alternatives, even though we normally try
to keep the core documentation provider-agnostic, because otherwise that
information tends to be rather buried in the provider documentation and
thus the reader would be reasonable to use provisioners just because we're
not giving specific enough alternative recommendations.