Here is an example that will setup the following:
+ An SSH key resource.
+ A virtual server resource that uses an existing SSH key.
+ A virtual server resource using an existing SSH key and a Terraform managed SSH key (created as "test_key_1" in the example below).
(create this as sl.tf and run terraform commands from this directory):
```hcl
provider "softlayer" {
username = ""
api_key = ""
}
resource "softlayer_ssh_key" "test_key_1" {
name = "test_key_1"
public_key = "${file(\"~/.ssh/id_rsa_test_key_1.pub\")}"
# Windows Example:
# public_key = "${file(\"C:\ssh\keys\path\id_rsa_test_key_1.pub\")}"
}
resource "softlayer_virtual_guest" "my_server_1" {
name = "my_server_1"
domain = "example.com"
ssh_keys = ["123456"]
image = "DEBIAN_7_64"
region = "ams01"
public_network_speed = 10
cpu = 1
ram = 1024
}
resource "softlayer_virtual_guest" "my_server_2" {
name = "my_server_2"
domain = "example.com"
ssh_keys = ["123456", "${softlayer_ssh_key.test_key_1.id}"]
image = "CENTOS_6_64"
region = "ams01"
public_network_speed = 10
cpu = 1
ram = 1024
}
```
You'll need to provide your SoftLayer username and API key,
so that Terraform can connect. If you don't want to put
credentials in your configuration file, you can leave them
out:
```
provider "softlayer" {}
```
...and instead set these environment variables:
- **SOFTLAYER_USERNAME**: Your SoftLayer username
- **SOFTLAYER_API_KEY**: Your API key
This brings across the following resources for Triton from the
joyent/triton-terraform repository, and converts them to the canonical
Terraform style, introducing Terraform-style documentation and
acceptance tests which run against the live API rather than the local
APIs:
- triton_firewall_rule
- triton_machine
- triton_key
This brings across the following resources for Triton from the
joyent/triton-terraform repository, and converts them to the canonical
Terraform style, introducing Terraform-style documentation and
acceptance tests which run against the live API rather than the local
APIs:
- triton_firewall_rule
- triton_machine
- triton_key
- Add documentation for resources
- Rename files to match standard patterns
- Add acceptance tests for resource groups
- Add acceptance tests for vnets
- Remove ARM_CREDENTIALS file - as discussed this does not appear to be
an Azure standard, and there is scope for confusion with the
azureProfile.json file which the CLI generates. If a standard emerges
we can reconsider this.
- Validate credentials in the schema
- Remove storage testing artefacts
- Use ARM IDs as Terraform IDs
- Use autorest hooks for logging
As of this commit this provider has only logical resources that allow
the creation of private keys, self-signed certs and certificate requests.
These can be useful when creating other resources that use TLS
certificates, such as AWS Elastic Load Balancers.
Later it could grow to include support for real certificate provision from
CAs using the LetsEncrypt ACME protocol, once it is stable.