While this initial implementation is a very simple wrapper function, implementing this in the helper/resource package provides some downstream benefits:
* Provides a standard interface for plugin developers to enable parallel acceptance testing
* Existing plugins can simply convert resource.Test to resource.ParallelTest references (as appropriate) to enable the functionality, rather than worrying about additional line(s) to each acceptance test function or TestCase
* Potential enhancements to ParallelTest (e.g. adding an environment variable to skip enabling the behavior) are consistently propagated
We already had the functionality to make resources deprecated, which was
used when migrating resources to data sources, but the functionality was
unexported, so only the schema package could do it. Now it's exported,
meaning providers can mark entire resources as deprecated. I also added
a test in hopefully-the-right place?
This adds the Taint field to the acceptance testing framework, allowing
the ability to pre-taint resources at the beginning of a particular
TestStep. This can be useful for when an explicit ForceNew is required
for a specific resource for troubleshooting things like diff mismatches,
etc.
The field accepts resource addresses as a list of strings. To keep
things simple for the time being, only addresses in the root module are
accepted. If we ever want to expand this past that, I'd be almost
inclined to add some facilities to the core terraform package to help
translate actual module resource addresses (ie:
module.foo.module.bar.some_resource.baz) into the correct state, versus
the current convention in some acceptance testing facilities that take
the module address as a list of strings (ie: []string{"root", "foo",
"bar"}).
A couple of bugs have been discovered in ResourceDiff.ForceNew:
* NewRemoved is not preserved when a diff for a key is already present.
This is because the second diff that happens after customization
performs a second getChange on not just state and config, but also on
the pre-existing diff. This results in Exists == true, meaning nil is
never returned as a new value.
* ForceNew was doing the work of adding the key to the list of changed
keys by doing a full SetNew on the existing value. This has a side
effect of fetching zero values from what were otherwise undefined values
and creating diffs for these values where there should not have been
(example: "" => "0").
This update fixes these scenarios by:
* Adding a new private function to check the existing diff for
NewRemoved keys. This is included in the check on new values in
diffChange.
* Keys that have been flagged as ForceNew (or parent keys of lists and
sets that have been flagged as ForceNew) are now maintained in a
separate map. UpdatedKeys now returns the results of both of these maps,
but otherwise these keys are ignored by ResourceDiff.
* Pursuant the above, values are no longer pushed into the newDiff
writer by ForceNew. This prevents the zero value problem, and makes for
a cleaner implementation where the provider has to "manually" SetNew to
update the appropriate values in the writer. It also prevents
non-computed keys from winding up in the diff, which ResourceDiff
normally blocks by design.
There are also a couple of tests for cases that should never come up
right now involving Optional/Computed values and NewRemoved, for which
explanations are given in annotations of each test. These are here to
guard against future regressions.
Added some more context to GetOkExists, moved Computed to NewValueKnown
to accommodate some changes that will be coming up in HCL2 that may make
"Computed" less intuitive of a function name, and updated the docs for
NewValueKnown as well.
This adds a new method to ResourceDiff: Computed, which exposes the
computed read result field to ResourceDiff. In the context of
customizing the diff, this is important as interpolated and otherwise
computed values will show up in the diff as blank, with no way of
determining if the value is actually blank or if it's a computed value
not available at diff customization time. Currently assumptions need to
be made on this, but this does not help in validation scenarios where
one needs to differentiate between an actual blank value and a value
that will be available later.
This is exposed for the most part via NewComputed in the diff, but the
tests cover both the config reader as well (with no diff, even though
this should not come up in normal operation) and also the newDiff reader
when someone sets a new value using SetNew and SetNewComputed.
This commit also exposes GetOkExists. The tests were mostly pulled from
ResourceData but a few were added to ensure that config was being
properly covered as well, in addition to covering SetNew and
SetNewComputed.
Return the global default timeout if the ResourceData timeouts are nil.
Set the timeouts from the Resource when calling Resource.Data, so that
the config values are always available.
For historical reasons, the handling of element types for maps is inconsistent with other collection types.
Here we begin a multi-step process to make it consistent, starting by supporting both the "consistent" form of using a schema.Schema and an existing erroneous form of using a schema.Type directly. In subsequent commits we will phase out the erroneous form and require the schema.Schema approach, the same as we do for TypeList and TypeSet.
This is rarely needed, but sometimes tests need to create temporary files as part of their operation. This should be used sparingly, since it prevents the pro-active cleanup of the temporary working directory.
In terraform-providers/terraform-provider-aws#2935, we have been cleaning code
duplication by benefiting from the "NormalizeJsonString" present in the "structure" helper.
It appears that tests in the AWS provider are covering more use-cases,
which are added in this work.
This new codepath with the getDiff "customzed" return value, along with
the associated test need to be removed as soon as we can support unset
fields from the config, so we don't continue to carry this broken
behavior forward any longer than needed.
This extends the internal diffChange method so that ResourceDiff's
implementation of it can report back whether or not the value came from
a customized diff.
This is an effort to work to preserve the pre-ResourceDiff behaviour
that ignores the diff for computed keys when the old value was populated
but the new value wasn't - this behaviour is actually being depended on
by users that are using it to exploit using zero values in modules. This
should allow both scenarios to co-exist by shifting the NewComputed
exemption over to exempting values that come from diff customization.
This reverts one of the changes from 6a4f7b0, which broke empty strings
being seen as unset for computed values.
This breaks a number of other tests, and is only an intermediate change
for evaluating other solutions.
This case should be expected to fail with the current diff algorithm,
but the existing behavior was widely relied upon so we need to roll this
back until there is a representable nil value.
The CustomizeDiff functionality in helper/schema is powerful, but directly
writing single CustomizeDiff functions can obscure the intent when a
number of different, orthogonal diff-customization behaviors are required.
This new library provides some building blocks that aim to allow a more
declarative form of CustomizeDiff implementation, by composing a number of
smaller operations. For example:
&schema.Resource{
// ...
CustomizeDiff: customdiff.All(
customdiff.ValidateChange("size", func (old, new, meta interface{}) error {
// If we are increasing "size" then the new value must be
// a multiple of the old value.
if new.(int) <= old.(int) {
return nil
}
if (new.(int) % old.(int)) != 0 {
return fmt.Errorf("new size value must be an integer multiple of old value %d", old.(int))
}
return nil
}),
customdiff.ForceNewIfChange("size", func (old, new, meta interface{}) bool {
// "size" can only increase in-place, so we must create a new resource
// if it is decreased.
return new.(int) < old.(int)
}),
customdiff.ComputedIf("version_id", func (d *schema.ResourceDiff, meta interface{}) bool {
// Any change to "content" causes a new "version_id" to be allocated.
return d.HasChange("content")
}),
),
}
The goal is to allow the various separate operations to be quickly seen
and to ensure that each of them runs independently of the others. These
functions all create closures on the call parameters, so the result is
still just a normal CustomizeDiffFunc and so the helpers in this package
can be combined with hand-written functions as needed.
As we get more experience writing CustomizeDiff functions we may wish to
expand the repertoire of functions here in future; this initial set
attempts to cover some common cases we've seen so far. We may also
investigate some helper functions that are entirely declarative and so
don't take callback functions at all, but want to learn what the relevant
use-cases are before going in too deep here.
Looks like while we were checking errors correctly when ExpectError was
set, we weren't checking for the *absence* of an error, which is should
be checked as well (no error is still not the error we are looking for).
Added a few more tests for ExpectError as well.
Validation is the best time to return detailed diagnostics
to the user since we're much more likely to have source
location information, etc than we are in later operations.
This change doesn't actually add any detail to the messages
yet, but it changes the interface so that we can gradually
introduce more detailed diagnostics over time.
While here there are some minor adjustments to some of the
messages to improve their consistency with terminology we
use elsewhere.
StringMatch returns a validation function that can be used to match a
string against a regular expression. This can be used for simple
substring validations or more complex validation scenarios. Optionally,
an error message can be returned so that the user is returned a better
error message other than that their field did not match a regular
expression that they might not be able to understand.
There are situations where one may need to write to a set, list, or map
more than once per single TF operation (apply/refresh/etc). In these
cases, further writes using Set (example: d.Set("some_set", newSet))
currently create unstable results in the set writer (the name of the
writer layer that holds the data set by these calls) because old keys
are not being cleared out first.
This bug is most visible when using sets. Example: First write to set
writes elements that have been hashed at 10 and 20, and the second write
writes elements that have been hashed at 30 and 40. While the set length
has been correctly set at 2, since a set is basically a map (as is the
entire map writer) and map results are non-deterministic, reads to this
set will now deliver unstable results in a random but predictable
fashion as the map results are delivered to the caller non-deterministic
- sometimes you may correctly get 30 and 40, but sometimes you may get
10 and 20, or even 10 and 30, etc.
This problem propagates to state which is even more damaging as unstable
results are set to state where they become part of the permanent data
set going forward.
The problem also applies to lists and maps. This is probably more of an
issue with maps as a map can contain any key/value combination and hence
there is no predictable pattern where keys would be overwritten with
default or zero values. This is contrary to complex lists, which has
this problem as well, but since lists are deterministic and the length
of a list properly gets updated during the overwrite, the problem is
masked by the fact that a read will only read to the boundary of the
list, skipping any bad data that may still be available due past the
list boundary.
This update clears the child contents of any set, list, or map before
beginning a new write to address this issue. Tests are included for all
three data types.