The template resources don't actually need to retain any state, so they
are good candidates to be data sources.
This includes a few tweaks to the acceptance tests -- now configured to
run as unit tests -- since it seems that they have been slightly broken
for a while now. In particular, the "update" cases are no longer tested
because updating is not a meaningful operation for a data source.
This resource (unlike the others in this provider) isn't stateful, so it
is a good candidate to be a data source.
The old resource form is preserved via the standard shim in helper/schema,
which will generate a deprecation warning but will still allow the
resource to be used.
* small doc update
* provider/atlas: Add docs for Artifact Data Source
* provider/atlas: Remove a test method that isn't used
* provider/atlas: Add Data Source for Atlas Artifact
* provider/atlas: Show deprecation error on atlas_artifact resource
* Add SES resource
* Detect ReceiptRule deletion outside of Terraform
* Handle order of rule actions
* Add position field to docs
* Fix hashes, add log messages, and other small cleanup
* Fix rebase issue
* Fix formatting
this datasource allows terraform to work with externally modified state, e.g.
when you're using an ECS service which is continously updated by your CI via the
AWS CLI.
right now you'd have to wrap terraform into a shell script which looks up the
current image digest, so running terraform won't change the updated service.
using the aws_ecs_container_definition data source you can now leverage
terraform, removing the wrapper entirely.
This brings over the work done by @apparentlymart and @radeksimko in
PR #3124, and converts it into a data source for the AWS provider:
This commit adds a helper to construct IAM policy documents using
familiar Terraform concepts. It makes Terraform-style interpolations
easier and resolves the syntax conflict between Terraform interpolations
and IAM policy variables by changing the latter to use &{...} for its
interpolations.
Its use is completely optional and users are free to go on using literal
heredocs, file interpolations or whatever else; this just adds another
option that fits more naturally into a Terraform config.
This data source allows one to look up the most recent AMI for a specific
set of parameters, much like aws ec2 describe-images in the AWS CLI.
Basically a refresh of hashicorp/terraform#4396, in data source form.
* Add per user, role and group policy attachment
* Add docs for new IAM policy attachment resources.
* Make policy attachment resources manage only 1 entity<->policy attachment
* provider/aws: Tidy up IAM Group/User/Role attachments
This commit adds a data source with a single list, `instance` for the
schema which gets populated with the availability zones to which an
account has access.
* Grafana provider
* grafana_data_source resource.
Allows data sources to be created in Grafana. Supports all data source
types that are accepted in the current version of Grafana, and will
support any future ones that fit into the existing structure.
* Vendoring of apparentlymart/go-grafana-api
This is in anticipation of adding a Grafana provider plugin.
* grafana_dashboard resource
* Website documentation for the Grafana provider.
As a first example of a real-world data source, the pre-existing
terraform_remote_state resource is adapted to be a data source. The
original resource is shimmed to wrap the data source for backward
compatibility.
This introduces the terraform state list command to list the resources
within a state. This is the first of many state management commands to
come into 0.7.
This is the first command of many to come that is considered a
"plumbing" command within Terraform (see "plumbing vs porcelain":
http://git.661346.n2.nabble.com/what-are-plumbing-and-porcelain-td2190639.html).
As such, this PR also introduces a bunch of groundwork to support
plumbing commands.
The main changes:
- Main command output is changed to split "common" and "uncommon"
commands.
- mitchellh/cli is updated to support nested subcommands, since
terraform state list is a nested subcommand.
- terraform.StateFilter is introduced as a way in core to filter/search
the state files. This is very basic currently but I expect to make it
more advanced as time goes on.
- terraform state list command is introduced to list resources in a
state. This can take a series of arguments to filter this down.
Known issues, or things that aren't done in this PR on purpose:
- Unit tests for terraform state list are on the way. Unit tests for the
core changes are all there.
* New top level AWS resource aws_eip_association
* Add documentation for aws_eip_association
* Add tests for aws_eip_association
* provider/aws: Change `aws_elastic_ip_association` to have computed
parameters
The AWS API was send ing more parameters than we had set. Therefore,
Terraform was showing constant changes when plans were being formed
Change the AWS DB Instance to now include the DB Option Group param. Adds a test to prove that it works
Add acceptance tests for the AWS DB Option Group work. This ensures that Options can be added and updated
Documentation for the AWS DB Option resource
Here is an example that will setup the following:
+ An SSH key resource.
+ A virtual server resource that uses an existing SSH key.
+ A virtual server resource using an existing SSH key and a Terraform managed SSH key (created as "test_key_1" in the example below).
(create this as sl.tf and run terraform commands from this directory):
```hcl
provider "softlayer" {
username = ""
api_key = ""
}
resource "softlayer_ssh_key" "test_key_1" {
name = "test_key_1"
public_key = "${file(\"~/.ssh/id_rsa_test_key_1.pub\")}"
# Windows Example:
# public_key = "${file(\"C:\ssh\keys\path\id_rsa_test_key_1.pub\")}"
}
resource "softlayer_virtual_guest" "my_server_1" {
name = "my_server_1"
domain = "example.com"
ssh_keys = ["123456"]
image = "DEBIAN_7_64"
region = "ams01"
public_network_speed = 10
cpu = 1
ram = 1024
}
resource "softlayer_virtual_guest" "my_server_2" {
name = "my_server_2"
domain = "example.com"
ssh_keys = ["123456", "${softlayer_ssh_key.test_key_1.id}"]
image = "CENTOS_6_64"
region = "ams01"
public_network_speed = 10
cpu = 1
ram = 1024
}
```
You'll need to provide your SoftLayer username and API key,
so that Terraform can connect. If you don't want to put
credentials in your configuration file, you can leave them
out:
```
provider "softlayer" {}
```
...and instead set these environment variables:
- **SOFTLAYER_USERNAME**: Your SoftLayer username
- **SOFTLAYER_API_KEY**: Your API key
this implements two new resource types:
* openstack_networking_secgroup_v2 - create a neutron security group
* openstack_networking_secgroup_rule_v2 - create a newutron security
group rule
Unlike their nova counterparts the neutron security groups allow a user
to specify the target tenant_id allowing a cloud admin to create per
tenant resources.
* provider/aws: Default Network ACL resource
Provides a resource to manage the default AWS Network ACL. VPC Only.
* Remove subnet_id update, mark as computed value. Remove extra tag update
* refactor default rule number to be a constant
* refactor revokeRulesForType to be revokeAllNetworkACLEntries
Refactor method to delete all network ACL entries, regardless of type. The
previous implementation was under the assumption that we may only eliminate some
rule types and possibly not others, so the split was necessary.
We're now removing them all, so the logic isn't necessary
Several doc and test cleanups are here as well
* smite subnet_id, improve docs
This introduces a provider for Cobbler. Cobbler manages bare-metal
deployments and, to some extent, virtual machines. This initial
commit supports the following resources: distros, profiles, systems,
kickstart files, and snippets.
* CloudFront implementation v3
* Update tests
* Refactor - new resource: aws_cloudfront_distribution
* Includes a complete re-write of the old aws_cloudfront_web_distribution
resource to bring it to feature parity with API and CloudFormation.
* Also includes the aws_cloudfront_origin_access_identity resource to generate
origin access identities for use with S3.
GitHub really doesn't like when you make the H lowercase, it violates
their brand guidelines and they won't help promote anything that doesn't
use the capital H.
It turns out all other providers use `ip_address` where the CloudStack
provider uses `ipaddress`. To make this more consistent this PR
deprecates `ipaddress` and adds `ip_address` where needed…
This brings across the following resources for Triton from the
joyent/triton-terraform repository, and converts them to the canonical
Terraform style, introducing Terraform-style documentation and
acceptance tests which run against the live API rather than the local
APIs:
- triton_firewall_rule
- triton_machine
- triton_key
This brings across the following resources for Triton from the
joyent/triton-terraform repository, and converts them to the canonical
Terraform style, introducing Terraform-style documentation and
acceptance tests which run against the live API rather than the local
APIs:
- triton_firewall_rule
- triton_machine
- triton_key