This commit adds an `alltrue` function to Terraform configuration. A
reason we might want this function is because it will enable more
powerful custom variable validations. For example:
```hcl
variable "amis" {
type = list(object({
id = string
}))
validation {
condition = (alltrue([
for a in var.amis : length(a.id) > 4 && substr(a.id, 0, 4) == "ami-"
]))
error_message = "The ID of at least one AMI was invalid."
}
}
```
All of the feedback from the experiment described enhancements that can
potentially be added later without breaking changes, so this change simply
removes the experiment gate from the feature as originally implemented
with no changes to its functionality.
Further enhancements may follow in later releases, but the goal of this
change is just to ship the feature exactly as it was under the experiment.
Most of the changes here are cleaning up the experiment opt-ins from our
test cases. The most important parts are in configs/experiments.go and in
experiments/experiment.go .
Previously the templatefile function would permit any arbitrary string as
a variable name, but due to the HCL template syntax it would be impossible
to refer to one that isn't a valid HCL identifier without causing an
HCL syntax error.
The HCL syntax errors are correct, but don't really point to the root
cause of the problem. Instead, we'll pre-verify that the variable names
are valid before we even try to render the template, and given a
specialized error message that refers to the vars argument expression as
the problematic part, which will hopefully make the resolution path
clearer for a user encountering this situation.
The syntax error still remains for situations where all of the variable
names are correct but e.g. the user made a typo referring to one, which
makes sense because in that case the problem _is_ inside the template.
* add setdifference and setsubtract functions and docs
* remove setdifference as it is not implemented correct in underlying lib
* Update setintersection.html.md
* Update setproduct.html.md
* Update setunion.html.md
The existing "type" argument allows specifying a type constraint that
allows for some basic validation, but often there are more constraints on
a variable value than just its type.
This new feature (requiring an experiment opt-in for now, while we refine
it) allows specifying arbitrary validation rules for any variable which
can then cause custom error messages to be returned when a caller provides
an inappropriate value.
variable "example" {
validation {
condition = var.example != "nope"
error_message = "Example value must not be \"nope\"."
}
}
The core parts of this are designed to do as little new work as possible
when no validations are specified, and thus the main new checking codepath
here can therefore only run when the experiment is enabled in order to
permit having validations.
These are intended to make it easier to work with arbitrary data
structures whose shape might not be known statically, such as the result
of jsondecode(...) or yamldecode(...) of data from a separate system.
For example, in an object value which has attributes that may or may not
be set we can concisely provide a fallback value to use when the attribute
isn't set:
try(local.example.foo, "fallback-foo")
Using a "try to evaluate" model rather than explicit testing fits better
with the usual programming model of the Terraform language where values
are normally automatically converted to the necessary type where possible:
the given expression is subject to all of the same normal type conversions,
which avoids inadvertently creating a more restrictive evaluation model
as might happen if this were handled using checks like a hypothetical
isobject(...) function, etc.
It's a common source of errors to try to produce JSON or YAML syntax
using string concatenation via our template language but to miss some
details like correct string escaping, quoting, required commas, etc.
The jsonencode and yamlencode functions are a better way to generate JSON
and YAML, but it's not immediately obvious that both of these functions
are available for use in external templates (via templatefile) too.
Given that questions related to this come up a lot in our community forum
and elsewhere, it seems worth having a documentation section to show the
pattern of having a template that consists only of a single function call.
A very common question since we launched the two repetition constructs
is how to deal with situations where the input data structure doesn't
match one-to-one with the desired configuration.
This adds some full worked examples of two common situations that have
come up in questions. To avoid adding a lot of extra content to the
already-large "expressions" and "resources" pages, the main bulk of this
new content lives with the relevant functions themselves as a full example
of one thing they are good for, and then we'll link to them from the two
general documentation sections where folks are likely to be reading when
they encounter the problem.
The cidrsubnets function signature is intentionally very low-level and
focused on the core requirement of generating addresses. This registry
module then wraps it with some additional functionality to make it more
convenient to generate and use subnet address ranges.
This is a companion to cidrsubnet that allows bulk-allocation of multiple
subnet addresses at once, with automatic numbering.
Unlike cidrsubnet, cidrsubnets allows each of the allocations to have a
different prefix length, and will pack the networks consecutively into the
given address space. cidrsubnets can potentially create more complicated
addressing schemes than cidrsubnet alone can, because it's able to take
into account the full set of requested prefix lengths rather than just
one at a time.
Reference: https://github.com/hashicorp/terraform/issues/16697
Enumerates a set of regular file names from a given glob pattern. Implemented via the Go stdlib `path/filepath.Glob()` functionality. Notably, stdlib does not support `**` or `{}` extended patterns. See also: https://github.com/golang/go/issues/11862
To support the extended glob patterns, it will require adding a dependency on a third party library or adding our own matching code.
These existing upstream cty functions allow matching strings against
regular expression patterns, which can be useful if you need to consume
a non-standard string format that Terraform doesn't (and can't) have a
built-in function for.
We added the csvdecode function originally with the intent of it being
used with for_each, but because csvdecode was released first we had a
section in its documentation warning about the downsides of using it with
"count", since that seemed like something people would be likely to try.
With resource "for_each" now merged, we can replace that scary section
with a more positive example of using these two features together.
We still include a paragraph noting that "count" _could_ be used here, but
with a caution against doing so. This is in the hope of helping users
understand the difference between these two patterns and why for_each is
the superior choice for most situations.
The search "terraform leading zero" does not find the `format()`
function, which is perfectly capable of adding leading zeros.
Thus I have added this one word to help people find `format()`.