with NestedType objects.
There are a handful of mostly cosmetic changes in this PR which likely
make the diff awkward to read; I renamed several functions to
(hopefully) clarifiy which funcs worked with Blocks vs other types. I
also extracted some small code snippets into their own functions for
reusability.
The code that descends into attributes with NestedTypes is similar to
the block-handling code, and differs in all the ways blocks and
attributes differ: null is valid for attributes, unlike blocks which can
only be present or empty.
- rename ProposedNewObject to ProposedNew:
Now that there is an actual configschema.Object it will be clearer if
the function names match the type the act upon.
- extract attribute-handling logic from assertPlanValid and extend
A new function, assertPlannedAttrsValid, takes the existing
functionality and extends it to validate attributes with NestedTypes.
The NestedType-specific handling is in assertPlannedObjectValid, which
is very similar to the block-handling logic, except that nulls are a
valid plan (an attribute can be null, but not a block).
If a NestingList or NestingMap contains a dynamic type, they must be
handled as a cty.Tuple and cty.Object respectively, because the elements
may not have precisely matching types.
Previously we would construct a proposed new state with unknown values in
place of any not-set-in-config computed attributes, trying to save the
provider a little work in specifying that itself.
Unfortunately that turns out to be problematic because it conflates two
concerns: attributes can be explicitly set in configuration to an unknown
value, in which case the final result of that unknown overrides any
default value the provider might normally populate.
In other words, this allows the provider to recognize in the proposed new
state the difference between an Optional+Computed attribute being set to
unknown in the config vs not being set in the config at all.
The provider now has the responsibility to replace these proposed null
values with unknown values during PlanResourceChange if it expects to
select a value during the apply step. It may also populate a known value
if the final result can be predicted at plan time, as is the case for
constant defaults specified in the provider code.
This change comes from a realization that from core's perspective the
helper/schema ideas of zero values, explicit default values, and
customizediff tweaks are all just examples of "defaults", and by allowing
the provider to see during plan whether these attributes are being
explicitly set in configuration and thus decide whether the default will
be provided immediately during plan or deferred until apply.
ProposedNewObject intentionally replaces a null prior with an unknown
prior in order to easily fill in unknown values where they "show through"
under values not set explicitly in config, but it was failing to handle
that situation when dealing with nested blocks that are backed by sets.
We need to make the collection itself be a tuple or object rather than
list or map in this case, since otherwise all of the elements of the
collection are constrained to be of the same type and that isn't the
intent of a provider indicating that it accepts any type.
This produces a "proposed new state", which already has prior computed
values propagated into it (since that behavior is standard for all
resource types) but could be customized further by the provider to make
the "_planned_ new state".
In the process of implementing this it became clear that our configschema
DecoderSpec behavior is incorrect, since it's producing list values for
NestingList and map values for NestingMap. While that seems like it should
be right, we should actually be using tuple and object types respectively
to allow each block to have a different runtime type in situations where
an attribute is given the type cty.DynamicPseudoType. That's not fixed
here, and so without a further fix list and map blocks will panic here.
The DecoderSpec implementation will be fixed in a subsequent commit.