When init attempts to install a legacy provider required by state and
fails, but another provider with the same type is successfully
installed, this almost definitely means that the user is migrating an
in-house provider. The solution here is to use the `terraform state
replace-provider` subcommand.
This commit makes that next step clearer, by detecting this specific
case, and displaying a list of commands to fix the existing state
provider references.
Diagnostic detail lines sometimes contain lines which include commands
suggested for the user to execute. By convention, these start with
leading whitespace to indicate that they are not prose.
This commit changes the diagnostic formatter to wrap each line of the
detail separately, and skips word wrapping for lines prefixed with
space. This prevents ugly and confusing wrapping of long command lines.
This pull reverts a recent change to backend/local which created two context, one with and one without state. Instead I have removed the state entirely from the validate graph (by explicitly passing a states.NewState() to the validate graph builder).
This changed caused a test failure, which (ty so much for the help) @jbardin discovered was inaccurate all along: the test's call to `Validate()` was actually what was removing the output from state. The new expected test output matches terraform's actual behavior on the command line: if you use -target to destroy a resource, an output that references only that resource is *not* removed from state even though that test would lead you to believe it did.
This includes two tests to cover the expected behavior:
TestPlan_varsUnset has been updated so it will panic if it gets more than one request to input a variable
TestPlan_providerArgumentUnset covers #26035Fixes#26035, #26027
If a provider changes namespace in the registry, we can detect this when
running the 0.13upgrade command. As long as there is a version matching
the user's constraints, we now use the provider's new source address.
Otherwise, warn the user that the provider has moved and a version
upgrade is necessary to move to it.
When the output subcommand is called with no arguments, and there are no
outputs to show, we previously rendered an error message but returned a
non-error status code. This is confusing.
This commit changes the text UI to use a warning diagnostic, which makes
it clearer that this is a non-error situation. We do not change the exit
code or the text of the warning, so hopefully this is not considered a
breaking change.
When applying a backend config override file, we must not check for the
presence of all required fields, as the override can be a partial
configuration. It is only valid to check for required fields after all
overrides have been merged, which init already does.
When loading a backend config override file, init was doing two things
wrong:
- First, if the file failed to parse, we accidentally didn't return,
which caused a panic due to the parsed body being nil;
- Secondly, we were overzealous with the validation of the file,
allowing only attributes. While most backend configs are attributes
only, the enhanced remote backend body also contains a `workspaces`
block, which we need to support here.
This commit fixes the first bug with an early return and adds test cases
for missing file and intentionally-blank filename (to clear the config).
We also add a schema validation for the backend block, based on the
backend schema itself. This requires constructing an HCL body schema so
that we can call `Content` and check for diagnostic errors.
The result is more useful errors when an invalid backend config override
file is used, while also supporting the enhanced remote backend config
fully.
Does not include tests specific to the remote backend, because the
mocking involved to allow the backend to fully initialize is too
involved to be worth it.
If a module has multiple terraform.required_version constraints, any
failures would point at the last constraint in the error diagnostics. If
an earlier constraint was the actual problem, this leads to confusing
errors like this:
Error: Unsupported Terraform Core version
on main.tf line 6, in terraform:
6: required_version = ">= 0.13.0"
This configuration does not support Terraform version 0.13.0.
The error was due to storing the declaration range of the constraint as
a pointer to the contents of a loop variable, which was later
overwritten in later iterations of the loop. Instead we now use HCL's
handy Ptr() method to create a direct pointer to the range struct.
Include the import walk in the list of operations for which we create an
EvalModuleCallArgument node. This causes module call arguments to be
evaluated even if the module variables have defaults, ensuring that
invalid default values (such as the common "{}" for variables thought of
as maps) do not cause failures specific to import.
This fixes a bug where a child module evaluates an input variable in its
locals block, assuming that it is a nested object structure. The bug
report includes a default value of "{}", which is overridden by a root
variable value. Without the eval node added in this commit, the default
value is used and the local evaluation errors.
If somehow an invalid workspace has been selected, the Meta.Workspace
method should not return an error, to ensure that we don't break any
existing workflows with invalid workspace names.
We are validating the workspace name for all workspace commands. Due to
a bug with the TF_WORKSPACE environment variable, it has been possible
to accidentally create a workspace with an invalid name.
This commit removes the valid workspace name check for workspace delete
to allow users to clean up any invalid workspaces.
The workspace name can be overridden by setting a TF_WORKSPACE
environment variable. If this is done, we should still validate the
resulting workspace name; otherwise, we could end up with an invalid and
unselectable workspace.
This change updates the Meta.Workspace function to return an error, and
handles that error wherever necessary.
When moving a resource block with multiple instances to a new address
within the same module, we need to ensure that the target module is
present as late as possible. Otherwise, deleting the resource from the
original address triggers pruning, and the module is removed just before
we try to add the resource to it, which causes a crash.
Includes regression test which panics without this code change.
Most of the state package has been deprecated by the states package.
This PR replaces all the references to the old state package that
can be done simply - the low-hanging fruit.
* states: move state.Locker to statemgr
The state.Locker interface was a wrapper around a statemgr.Full, so
moving this was relatively straightforward.
* command: remove unnecessary use of state package for writing local terraform state files
* move state.LocalState into terraform package
state.LocalState is responsible for managing terraform.States, so it
made sense (to me) to move it into the terraform package.
* slight change of heart: move state.LocalState into clistate instead of
terraform
* unlock the state if Context() has an error, exactly as backend/remote does today
* terraform console and terraform import will exit before unlocking state in case of error in Context()
* responsibility for unlocking state in the local backend is pushed down the stack, out of backend.go and into each individual state operation
* add tests confirming that state is not locked after apply and plan
* backend/local: add checks that the state is unlocked after operations
This adds tests to plan, apply and refresh which validate that the state
is unlocked after all operations, regardless of exit status. I've also
added specific tests that force Context() to fail during each operation
to verify that locking behavior specifically.
This code was made to do nothing pre-0.12, and we have no plans to
reintroduce a diff in the apply output, so it seems reasonable to now
remove it altogether.
A lingering FIXME caused missing configuration from provider config
blocks in the json output of terraform plan. This fixes the regression
and adds a test. For the sake of testing, I added an optional attribute
to the show test provider, which resulted in the providers schema test
getting an update - not a bad addition, but we can always add a
test-specific provider schema as needed.
If the user specifies a host that isn't a provider registry in a provider
source address then we'll print out some specialized error messages for
different variants of that situation.
In particular, this includes a special case for when the error is on the
hostname "github.com", in anticipation of folks incorrectly attempting to
use GitHub repository URLs (or Go-style module paths that happen to be
on GitHub) to specify providers, so we can give a more specific hint about
that.
This is just a different presentation of an existing error case that we
are already covering in the installer tests, so there are no new tests
here. We could in principle have a test covering the exact text of these
error messages, but we don't have much precedent for command package tests
covering that level of cosmetic detail.
For Terraform v0.12 we introduced a special loading mode where we would
use the 0.11-syntax-compatible "earlyconfig" package as a heuristic to
identify situations where it was likely that the user was trying to use
0.11-only syntax that the upgrade tool might help with.
However, as the language has moved on that is no longer a suitable
heuristic in Terraform 0.13 and later: other new additions to the
language can cause the main loader to disagree with earlyconfig, which
would lead us to give poor advice about how to respond.
Instead, we'll now return the same generic "there are errors" message in
all syntax error cases. We have an extra message for errors in this
case (as compared to other commands) because "terraform init" is usually
the first command a new user interacts with and so this message gives some
extra explanation about what "terraform init" will do with the
configuration once it's valid.
This also includes a reset control character in the output of the message
as part of our ongoing mission to stop Terraform printing out whole
paragraphs of colored text, which can often be hard to read for various
reasons.
After installing providers, we validate the presence of an executable
file, and generate a selected versions lockfile. If this process fails,
notify the user. One possible cause for this is an invalid provider
package with a missing or misnamed executable file.
Instead of searching the installed provider package directory for a
binary as we install it, we can lazily detect the executable as it is
required. Doing so allows us to separately report an invalid unpacked
package, giving the user more actionable error messages.
* command/console: return in case of errors before trying to unlock remote
state
The remote backend `Context` would exit without an active lock if there
was an error, while the local backend `Context` exited *with* a lock. This
caused a problem in `terraform console`, which would call unlock
regardless of error status.
This commit makes the local and remote backend consistently unlock the
state incase of error, and updates terraform console to check for errors
before trying to unlock the state.
* adding tests for remote and local backends
* command/init: return an error with invalid -backend-config files
The -backend-config flag expects a set of key-value pairs or a file
containing key-value pairs. If the file instead contains a full backend
configuration block, it was silently ignored. This commit adds a check
for blocks in the file and returns an error if they are encountered.
Fixes#24845
* emphasize backend configuration file in docs
This is for consistency with other commands which use prompts, all of
which require "yes" rather than "y" to confirm.
We also migrate the login command to use UIInput, which now supports
securely asking for passwords or secrets via the speakeasy library.
* internal/getproviders: decode and return any registry warnings
The public registry may include a list of warnings in the "versions"
response for any given provider. This PR adds support for warnings from
the registry and an installer event to return those warnings to the
user.
Previously, any comments inside the required provider configuration for
a given provider would be wiped out upon rerunning the 0.13upgrade
command. This commit attempts to preserve those comments if the existing
entry is semantically equivalent to the entry we are about to write.
* command: adjust exit code of state rm and state mv
Commands `state rm` and `state mv` will now exit with code 1 when the
target resource is not found in the current state.
This is consistent with `terraform state show non_existent_resource`.
Fixes#17800
We previously intentionally removed support for the allow-missing-config
option to terraform import, requiring that all imported resources have
matching config. See #24412.
However, the option was not removed from the import command, and it is
widely used. This commit reintroduces support for importing with a
missing configuration by falling back to implying the provider FQN based
on the resource type.
When using `-flag=value` with Powershell, unquoted values are broken
into separate arguments. This means that the following command:
terraform init -backend-config=./backend.conf
is interpreted by Terraform as:
terraform init -backend-config= ./backend.conf
This results in an empty backend-config setting (which is semantically
valid!) followed by a custom configuration path (pointing at a file).
Due to a bug where we could exit without printing diagnostics, this
would result in a silent failure that was very difficult to diagnose.
Some of the tests in the command package were running directly on the
fixture directories, and modifying or locking files within them. This
could cause state to leak between tests.
This commit cleans up all such cases that I could find.
We globally support a -v/-version/--version flag, which triggers the
version subcommand. The recent introduction of JSON output support meant
we started parsing the flags for the first time, but we didn't add flags
for these global version arguments.
This commit adds those flags (but doesn't check them, since they have no
effect on the version command itself). Also adds usage information for
terraform version.
The positional argument passed to apply was once used to specify a
source for a Terraform module to fetch and initialize (#337). This
functionality was removed from the init command later (#15032) but not
completely removed from apply.
This code was non-functional but largely not harmful, except for a very
specific case: when passing an absolute path to a plan file as the
positional argument on Windows, the getter.Detect code would incorrectly
interpret the path as a URL. This caused init to fail and the apply
command would exit with code 1 but without diagnostics.
This commit removes this codepath, which fixes this bug, and should
otherwise have no effect on the supported behaviour of apply.
This new version permits omitting the space between the operator and the
boundary in a ruby-style version constraint, like ">1.0.0" instead of
"> 1.0.0".
When initializing a configuration which refers to re-namespaced legacy
providers, we attempt to detect this and display a diagnostic message.
Previously this message would direct the user to run the 0.13upgrade
command, but without specifying in which directories.
This commit detects which modules are using the providers in question,
and for local modules displays a list of upgrade commands which specify
the source directories of these modules.
For remote modules, we display a separate list noting that they need to
be upgraded elsewhere, providing both the local module call name and the
module source address.
Providers can be required from multiple sources. The previous
implementation of the providers sub-command displayed only a flat list
of provider requirements, which made it difficult to see which modules
required each provider.
This commit reintroduces the tree display of provider requirements, and
adds a separate output block for providers required by existing state.
I feel the current confirmation prompt for 0.13upgrade command is
ambiguous what is expected. Actually, when I used it for the first time,
I cancelled it by typing `y` instead of `yes`.
I believe it would be great if the 0.13upgrade command tell us the
expected value for confirmation like 0.12upgrade.
Diagnostics where the highlight range has an empty overlap with a line
would skip lines of the output. This is because if two ranges abut each
other, they can be considered to overlap, but that overlap is empty.
This results in an edge case in the diagnostic printer which causes the
line not to be printed.
This new command is intended to make it easy to create or update a mirror
directory containing suitable providers for the current configuration,
producing a layout that is appropriate both for a filesystem mirror or,
if copied into the document root of an HTTP server, a network mirror.
This initial version is not customizable aside from being able to select
multiple platforms to install packages for.
Future iterations of this could include commands to turn the JSON index
generation on and off, or to instruct it to produce the unpacked directory
layout instead of the packed directory layout as it currently does. Both
of those options would make the generated directory unsuitable to be
a network mirror, but it would still work as a filesystem mirror.
In the long run this will hopefully form part of a replacement workflow to
terraform-bundle as a way to put copies of providers somewhere so we don't
need to re-download them every time, but some other changes will be needed
outside of just this command before that'd be true, such as adding support
for network and/or filesystem mirrors in Terraform Enterprise.
This is a baby-step towards an intended future where all Terraform actions
which have side-effects in either remote objects or the Terraform state
can go through the plan+apply workflow.
This initial change is focused only on allowing plan+apply for changes to
root module output values, so that these can be written into a new state
snapshot (for consumption by terraform_remote_state elsewhere) without
having to go outside of the primary workflow by running
"terraform refresh".
This is also better than "terraform refresh" because it gives an
opportunity to review the proposed changes before applying them, as we're
accustomed to with resource changes.
The downside here is that Terraform Core was not designed to produce
accurate changesets for root module outputs. Although we added a place for
it in the plan model in Terraform 0.12, Terraform Core currently produces
inaccurate changesets there which don't properly track the prior values.
We're planning to rework Terraform Core's evaluation approach in a
forthcoming release so it would itself be able to distinguish between the
prior state and the planned new state to produce an accurate changeset,
but this commit introduces a temporary stop-gap solution of implementing
the logic up in the local backend code, where we can freeze a snapshot of
the prior state before we take any other actions and then use that to
produce an accurate output changeset to decide whether the plan has
externally-visible side-effects and render any changes to output values.
This temporary approach should be replaced by a more appropriately-placed
solution in Terraform Core in a release, which should then allow further
behaviors in similar vein, such as user-visible drift detection for
resource instances.
Fetching a default namespace provider from the public registry can
result in 404 Not Found error. This might be caused by a previously-
default provider moving to a new namespace, which means that the
configuration needs to be upgraded to use an explicit provider source.
This commit adds a more detailed diagnostic for this situation,
suggesting that the intended provider might be in a new namespace. The
recommended course of action is to run the 0.13upgrade command to
generate the correct required_providers configuration.
This adds supports for "unmanaged" providers, or providers with process
lifecycles not controlled by Terraform. These providers are assumed to
be started before Terraform is launched, and are assumed to shut
themselves down after Terraform has finished running.
To do this, we must update the go-plugin dependency to v1.3.0, which
added support for the "test mode" plugin serving that powers all this.
As a side-effect of not needing to manage the process lifecycle anymore,
Terraform also no longer needs to worry about the provider's binary, as
it won't be used for anything anymore. Because of this, we can disable
the init behavior that concerns itself with downloading that provider's
binary, checking its version, and otherwise managing the binary.
This is all managed on a per-provider basis, so managed providers that
Terraform downloads, starts, and stops can be used in the same commands
as unmanaged providers. The TF_REATTACH_PROVIDERS environment variable
is added, and is a JSON encoding of the provider's address to the
information we need to connect to it.
This change enables two benefits: first, delve and other debuggers can
now be attached to provider server processes, and Terraform can connect.
This allows for attaching debuggers to provider processes, which before
was difficult to impossible. Second, it allows the SDK test framework to
host the provider in the same process as the test driver, while running
a production Terraform binary against the provider. This allows for Go's
built-in race detector and test coverage tooling to work as expected in
provider tests.
Unmanaged providers are expected to work in the exact same way as
managed providers, with one caveat: Terraform kills provider processes
and restarts them once per graph walk, meaning multiple times during
most Terraform CLI commands. As unmanaged providers can't be killed by
Terraform, and have no visibility into graph walks, unmanaged providers
are likely to have differences in how their global mutable state behaves
when compared to managed providers. Namely, unmanaged providers are
likely to retain global state when managed providers would have reset
it. Developers relying on global state should be aware of this.
Relying on the early config for provider requirements was necessary in
Terraform 0.12, to allow the 0.12upgrade command to run after init
installs providers.
However in 0.13, the same restrictions do not apply, and the detection
of provider requirements has changed. As a result, the early config
loader gives incorrect provider requirements in some circumstances,
such as those in the new test in this commit.
Therefore we are changing the init command to use the requirements found
by the full configuration loader. This also means that we can remove the
internal initwd CheckCoreVersionRequirements function.
provider is not found.
Previously a user would see the following error even if terraform was
only searching the local filesystem:
"provider registry registry.terraform.io does not have a provider named
...."
This PR adds a registry-specific error type and modifies the MultiSource
installer to check for registry errors. It will return the
registry-specific error message if there is one, but if not the error
message will list all locations searched.
* providercache: add logging for errors from getproviders.SearchLocalDirectory
providercache.fillMetaCache() was silently swallowing errors when
searching the cache directory. This commit logs the error without
changing the behavior otherwise.
* command/cliconfig: validate plugin cache dir exists
The plugin cache directory must exist for terraform to use it, so we
will add a check at the begining.
Previously the diagnostics from the config loaders (earlyconfig and
regular) were only appended to the overall diags if an error was found.
This adds all diagnostics from the regular config loader so that any
generated warnings will be displayed, even if there are no errors.
I did not add the `earlyconfig` warnings since they will be displayed if
there is an error and are likely to be duplicated by the config loader.
* internal/registry source: return error if requested provider version protocols are not supported
* getproviders: move responsibility for protocol compatibility checks into the registry client
The original implementation had the providercache checking the provider
metadata for protocol compatibility, but this is only relevant for the
registry source so it made more sense to move the logic into
getproviders.
This also addresses an issue where we were pulling the metadata for
every provider version until we found one that was supported. I've
extended the registry client to unmarshal the protocols in
`ProviderVersions` so we can filter through that list, instead of
pulling each version's metadata.
When looking up the namespace for a legacy provider source, we need to
use the /v1/providers/-/{name}/versions endpoint. For non-HashiCorp
providers, the /v1/providers/-/{name} endpoint returns a 404.
This commit updates the LegacyProviderDefaultNamespace method and the
mock registry servers accordingly.
If a configuration had multiple blocks in the versions.tf file, it would
be added to the `rewritePaths` list multiple times. We would then remove
it from this slice, but only once, and so the output file would later be
rewritten to remove the required providers block.
This commit uses a set instead of a list to prevent this case, and adds
a regression test.
Instead of using providers.tf as the default output file for the
upgrader, we now default to versions.tf. This means that if the
configuration has no `required_providers` blocks at all, or has
multiple, the provider version requirements will be stored in the
versions.tf file.
We now also update the versions.tf file to set a `required_version`
attribute in the first `terraform` block, with value ">= 0.13". This
is similar to the behaviour of the 0.12upgrade command, and signals that
the configuration should not be used with older versions of Terraform.
This commit implements most of the intended functionality of the upgrade
command for rewriting configurations.
For a given module, it makes a list of all providers in use. Then it
attempts to detect the source address for providers without an explicit
source.
Once this step is complete, the tool rewrites the relevant configuration
files. This results in a single "required_providers" block for the
module, with a source for each provider.
Any providers for which the source cannot be detected (for example,
unofficial providers) will need a source to be defined by the user. The
tool writes an explanatory comment to the configuration to help with
this.
Providers like Okta and AWS Cognito expect that the PKCE challenge
uses base64 URL Encoding without any padding (base64.RawURLEncoding)
Additionally, Okta strictly adheres to section 4.2 of RFC 7636 and
requires that the unencoded key for the PKCE data is at least 43
characters in length.
The only situation where `state mv` needs to understand the each mode is
when with resource addresses that may reference a single instance, or a
group of for_each or count instances. In this case we can differentiate
the two by checking the existence of the NoKey instance key.
* Include eval in output walk
This allows outputs to be evaluated in the evalwalk,
impacting terraform console. Outputs are still not evaluated
for terraform console in the root module, so this has
no impact on writing to state (as child module outputs are not
written to state). Also adds test coverage to the console command,
including for evaluating locals (another use of the evalwalk)
These were being used in an earlier iteration of the provider installation
configuration but it was all collapsed down into a single
ProviderInstallationMethod type later, making these redundant.
This exercises the ability to customize the installation methods used by
the provider plugin installer, in this case forcing the use of a custom
local directory with a result essentially the same as what happens when
you pass -plugin-dir to "terraform init".
The CLI config can be written in both native HCL and HCL JSON syntaxes, so
the provider_installation block must be expressible using JSON too. Our
previous checks to approximate HCL 2-level strictness were too strict for
HCL JSON where things are more ambiguous even in HCL 2, so this includes
some additional relaxations if we detect that we're decoding an AST
produced from a JSON file.
This is still subject to the quirky ways HCL 1 handles JSON though, so
the JSON value must be structured in a way that doesn't trigger HCL's
heuristics that try to guess what is a block and what is an attribute.
(This is the issue that HCL 2 fixes by always decoding using a schema;
there's more context on this in:
https://log.martinatkins.me/2019/04/25/hcl-json/ )
Unfortunately in the user model the noun "source" is already used for the
argument in the required_providers block to specify which provider to use,
so it's confusing to use the same noun to also refer to the method used to
obtain that provider.
In the hope of mitigating that confusion, here we use the noun "method",
as in "installation method", to talk about the decision between getting
a provider directly from its origin registry or getting it from some
mirror. This is distinct from the provider's "source", which is the
location where a provider _originates_ (prior to mirroring).
This noun is also not super awesome, but better than overloading an
existing term in the same feature.
In the first pass of implementing this it was strict about what arguments
are allowed inside source blocks, but that was counter to our usual design
principles for CLI config where we tend to ignore unrecognized things to
allow for some limited kinds of future expansion without breaking
compatibility with older versions of Terraform that will be sharing the
same CLI configuration files with newer versions.
However, I'd removed the tracking of that prior to the initial commit. I
missed some leftover parts when doing that removal, so this cleans up the
rest of it.
An earlier commit added a redundant stub for a new network mirror source
that was already previously stubbed as HTTPMirrorSource.
This commit removes the unnecessary extra stub and changes the CLI config
handling to use it instead. Along the way this also switches to using a
full base URL rather than just a hostname for the mirror, because using
the usual "Terraform-native service discovery" protocol here doesn't isn't
as useful as in the places we normally use it (the mirror mechanism is
already serving as an indirection over the registry protocol) and using
a direct base URL will make it easier to deploy an HTTP mirror under
a path prefix on an existing static file server.
When we originally introduced this environment variable it was intended to
solve for the use-case where a particular invocation of Terraform needs
a different CLI configuration than usual, such as if Terraform is being
run as part of an automated test suite or other sort of automated
situation with different needs than normal use.
However, we accidentally had it only override the original singleton CLI
config file, while leaving the CLI configuration directory still enabled.
Now we'll take the CLI configuration out of the equation too, so that only
the single specified configuration file and any other environment-sourced
settings will be included.
* internal/providercache: verify that the provider protocol version is
compatible
The public registry includes a list of supported provider protocol
versions for each provider version. This change adds verification of
support and adds a specific error message pointing users to the closest
matching version.
This new CLI config block type allows explicitly specifying where
Terraform should look to find provider plugins for installation. This is
not used anywhere as of this commit, but in a future commit we'll change
package main to treat the presence of a block of this type as a request
to disable the default set of provider sources and use these explicitly-
specified ones instead.
A side effect of the various changes to the provider installer included losing the initialization required error message which would occur if a user removed or modified the .terraform directory.
Previously, plugin factories were created after the configuration was loaded, in terraform.NewContext. Terraform would compare the required providers (from config and state) to the available providers and return the aforementioned error if a provider was missing.
Provider factories are now loaded at the beginning of any terraform command, before terraform even loads the configuration, and therefore before terraform has a list of required providers.
This commit replaces the current error when a providers' schema cannot be found in the provider factories with the init error, and adds a command test (to plan tests, for no real reason other than that's what I thought of first).
This more closely replicates the 0.12-and-earlier behavior, where having
at least one version of a provider installed locally would totally disable
any attempt to look for newer versions remotely.
This is just for the implicit default behavior. Assumption is that later
we'll have an explicit configuration mechanism that will allow the user
to specify exactly where to look for what, and thus avoid tricky
heuristics like this.
Providers installed from the registry are accompanied by a list of
checksums (the "SHA256SUMS" file), which is cryptographically signed to
allow package authentication. The process of verifying this has multiple
steps:
- First we must verify that the SHA256 hash of the package archive
matches the expected hash. This could be done for local installations
too, in the future.
- Next we ensure that the expected hash returned as part of the registry
API response matches an entry in the checksum list.
- Finally we verify the cryptographic signature of the checksum list,
using the public keys provided by the registry.
Each of these steps is implemented as a separate PackageAuthentication
type. The local archive installation mechanism uses only the archive
checksum authenticator, and the HTTP installation uses all three in the
order given.
The package authentication system now also returns a result value, which
is used by command/init to display the result of the authentication
process.
There are three tiers of signature, each of which is presented
differently to the user:
- Signatures from the embedded HashiCorp public key indicate that the
provider is officially supported by HashiCorp;
- If the signing key is not from HashiCorp, it may have an associated
trust signature, which indicates that the provider is from one of
HashiCorp's trusted partners;
- Otherwise, if the signature is valid, this is a community provider.
The providers command has been refactored to use the modern provider types and
ProviderRequirements() functions. This resulted in a breaking change to
the output: it no longer outputs the providers by module and no longer
prints `(inherited)` or `(from state)` to show why a provider is
included. We decided that at this time it was best to stick with the
existing functions and make this change, but if we get feedback from the
community we will revisit.
Additional tests to exercise providers in modules and providers from
state have been included.
This PR adds iteration through any provider configuration blocks in the
config in addProviderRequirements().
A stale comment (of mine!) would leave one expecting the
module.ProviderRequirements to include any requirements from provider
configs. The comment was inaccurate and has been updated.
When a provider dependency is implicit rather than explicit, or otherwise
when version constraints are lacking, we produce a warning recommending
the addition of explicit version constraints in the configuration.
This restores the warning functionality from previous Terraform versions,
adapting it slightly to account for the new provider FQN syntax and to
recommend using a required_providers block rather than version constraints
in "provider" blocks, because the latter is no longer recommended in the
documentation.
The fake installable package meta used a ZIP archive which gave
different checksums between macOS and Linux targets. This commit removes
the target from the contents of this archive, and updates the golden
hash value in the test to match. This test should now pass on both
platforms.
The provider fully-qualified name string used in configuration is very
long, and since most providers are hosted in the public registry, most
of that length is redundant. This commit adds and uses a `ForDisplay`
method, which simplifies the presentation of provider FQNs.
If the hostname is the default hostname, we now display only the
namespace and type. This is only used in UI, but should still be
unambiguous, as it matches the FQN string parsing behaviour.
This restores some of the local search directories we used to include when
searching for provider plugins in Terraform 0.12 and earlier. The
directory structures we are expecting in these are different than before,
so existing directory contents will not be compatible without
restructuring, but we need to retain support for these local directories
so that users can continue to sideload third-party provider plugins until
the explicit, first-class provider mirrors configuration (in CLI config)
is implemented, at which point users will be able to override these to
whatever directories they want.
This also includes some new search directories that are specific to the
operating system where Terraform is running, following the documented
layout conventions of that platform. In particular, this follows the
XDG Base Directory specification on Unix systems, which has been a
somewhat-common request to better support "sideloading" of packages via
standard Linux distribution package managers and other similar mechanisms.
While it isn't strictly necessary to add that now, it seems ideal to do
all of the changes to our search directory layout at once so that our
documentation about this can cleanly distinguish "0.12 and earlier" vs.
"0.13 and later", rather than having to document a complex sequence of
smaller changes.
Because this behavior is a result of the integration of package main with
package command, this behavior is verified using an e2etest rather than
a unit test. That test, TestInitProvidersVendored, is also fixed here to
create a suitable directory structure for the platform where the test is
being run. This fixes TestInitProvidersVendored.
There was a remaining TODO in this package to find the true provider FQN
when looking up the schema for a resource type. We now have that data
available in the Provider field of configs.Resource, so we can now
complete that change.
The tests for this functionality actually live in the parent "command"
package as part of the tests for the "terraform show" command, so this
fix is verified by all of the TestShow... tests now passing except one,
and that remaining one is failing for some other reason which we'll
address in a later commit.
Built-in providers are special providers that are distributed as part of
Terraform CLI itself, rather than being installed separately. They always
live in the terraform.io/builtin/... namespace so it's easier to see that
they are special, and currently there is only one built-in provider named
"terraform".
Previous commits established the addressing scheme for built-in providers.
This commit makes the installer aware of them to the extent that it knows
not to try to install them the usual way and it's able to report an error
if the user requests a built-in provider that doesn't exist or tries to
impose a particular version constraint for a built-in provider.
For the moment the tests for this are the ones in the "command" package
because that's where the existing testing infrastructure for this
functionality lives. A later commit should add some more focused unit
tests here in the internal/providercache package, too.
* command: refactor testBackendState to write states.State
testBackendState was using the older terraform.State format, which is no
longer sufficient for most tests since the state upgrader does not
encode provider FQNs automatically. Users will run `terraform
0.13upgrade` to update their state to include provider FQNs in
resources, but tests need to use the modern state format instead of
relying on the automatic upgrade.
* plan tests passing
* graph tests passing
* json packages test update
* command test updates
* update show test fixtures
* state show tests passing
In the new design the ProviderSource is decided by package main, not by
the "command" package, and so making sure the vendor directory is included
is the responsibility of that package instead. Therefore we can no longer
test this at the "command" package level, but we'll retain a test for it
in e2etests to record that it isn't currently working, so that we have
a prompt to fix it before releasing.
Due to some incomplete rework of this function in an earlier commit, the
safety check for using the same directory as both the target and the
cache was inverted and was raising an error _unless_ they matched, rather
than _if_ they matched.
This change is verified by the e2etest TestInitProviders_pluginCache,
which is also updated to use the new-style cache directory layout as part
of this commit.
These tests make assertions against specific user-oriented output from the
"terraform init" command, but we've intentionally changed some of these
messages as part of introducing support for the decentralized provider
namespace.
Both of these are attempting to test -plugin-dir, which means we need some
additional help to populate some suitable directories for -plugin-dir to
refer to. The new installFakeProviderPackagesElsewhere helper generalizes
the earlier installFakeProviderPackages to allow installing fake provider
packages to an arbitrary other directory.
This test is focused on making sure that the required_providers syntax
is working, so the rewritten version does not include any special handling
of pre-installed packages or "vendored" packages. Pre-installed plugins
are tested in other tests such as TestInit_getUpgradePlugins.
This test now requires a bit of a different approach because it was
previously directly constructing a cache directory but we now use a
different directory layout.
Rather than manually constructing the new heirarchical directory layout
(which would've required a lot more inline code), this introduces a helper
function installFakeProviderPackages that installs a fake provider package
directly into the local cache directory associated with a Meta object,
with the correct directory layout.
This is a slightly different approach than we used to take for this
option: rather than disabling the installer and causing all future
commands to look elsewhere for plugins, we'll now leave the installer
enabled by constrain it to only look at the given directories.
This is overall simpler because it doesn't require any special tracking
of the plugin directories for subsequent commands. Instead, the selections
file generated by the installer will record the versions it selected from
the specified directories, and we'll link them in to the local cache just
as we would normally so that other commands don't need to do anything
special to select the right plugins in either case.