Previously this codepath was generating a confusing message in the absense
of any symlinks, because filepath.EvalSymlinks returns a successful result
if the target isn't a symlink.
Now we'll emit the log line only if filepath.EvalSymlinks returns a
result that's different in a way that isn't purely syntactic (which
filepath.Clean would "fix").
The new message is a little more generic because technically we've not
actually ensured that a difference here was caused by a symlink and so
we shouldn't over-promise and generate something potentially misleading.
If a configuration requires a partial provider version (with some parts
unspecified), Terraform considers this as a constrained-to-zero version.
For example, a version constraint of 1.2 will result in an attempt to
install version 1.2.0, even if 1.2.1 is available.
When writing the dependency locks file, we previously would write 1.2.*,
as this is the in-memory representation of 1.2. This would then cause an
error on re-reading the locks file, as this is not a valid constraint
format.
Instead, we now explicitly convert the constraint to its zero-filled
representation before writing the locks file. This ensures that it
correctly round-trips.
Because this change is made in getproviders.VersionConstraintsString, it
also affects the output of the providers sub-command.
Use a single log writer instance for all std library logging.
Setup the std log writer in the logging package, and remove boilerplate
from test packages.
This changes the approach used by the provider installer to remember
between runs which selections it has previously made, using the lock file
format implemented in internal/depsfile.
This means that version constraints in the configuration are considered
only for providers we've not seen before or when -upgrade mode is active.
We no longer need to support 0.12-and-earlier-style provider addresses
because users should've upgraded their existing configurations and states
on Terraform 0.13 already.
For now this is only checked in the "init" command, because various test
shims are still relying on the idea of legacy providers the core layer.
However, rejecting these during init is sufficient grounds to avoid
supporting legacy provider addresses in the new dependency lock file
format, and thus sets the stage for a more severe removal of legacy
provider support in a later commit.
In earlier commits we started to make the installation codepath
context-aware so that it could be canceled in the event of a SIGINT, but
we didn't complete wiring that through the API of the getproviders
package.
Here we make the getproviders.Source interface methods, along with some
other functions that can make network requests, take a context.Context
argument and act appropriately if that context is cancelled.
The main providercache.Installer.EnsureProviderVersions method now also
has some context-awareness so that it can abort its work early if its
context reports any sort of error. That avoids waiting for the process
to wind through all of the remaining iterations of the various loops,
logging each request failure separately, and instead returns just
a single aggregate "canceled" error.
We can then set things up in the "terraform init" and
"terraform providers mirror" commands so that the context will be
cancelled if we get an interrupt signal, allowing provider installation
to abort early while still atomically completing any local-side effects
that may have started.
As we continue iterating towards saving valid hashes for a package in a
depsfile lock file after installation and verifying them on future
installation, this prepares getproviders for the possibility of having
multiple valid hashes per package.
This will arise in future commits for two reasons:
- We will need to support both the legacy "zip hash" hashing scheme and
the new-style content-based hashing scheme because currently the
registry protocol is only able to produce the legacy scheme, but our
other installation sources prefer the content-based scheme. Therefore
packages will typically have a mixture of hashes of both types.
- Installing from an upstream registry will save the hashes for the
packages across all supported platforms, rather than just the current
platform, and we'll consider all of those valid for future installation
if we see both successful matching of the current platform checksum and
a signature verification for the checksums file as a whole.
This also includes some more preparation for the second case above in that
signatureAuthentication now supports AcceptableHashes and returns all of
the zip-based hashes it can find in the checksums file. This is a bit of
an abstraction leak because previously that authenticator considered its
"document" to just be opaque bytes, but we want to make sure that we can
only end up trusting _all_ of the hashes if we've verified that the
document is signed. Hopefully we'll make this better in a future commit
with some refactoring, but that's deferred for now in order to minimize
disruption to existing codepaths while we work towards a provider locking
MVP.
The logic for what constitutes a valid hash and how different hash schemes
are represented was starting to get sprawled over many different files and
packages.
Consistently with other cases where we've used named types to gather the
definition of a particular string into a single place and have the Go
compiler help us use it properly, this introduces both getproviders.Hash
representing a hash value and getproviders.HashScheme representing the
idea of a particular hash scheme.
Most of this changeset is updating existing uses of primitive strings to
uses of getproviders.Hash. The new type definitions are in
internal/getproviders/hash.go.
Although origin registries return specific [filename, hash] pairs, our
various different installation methods can't produce a structured mapping
from platform to hash without breaking changes.
Therefore, as a compromise, we'll continue to do platform-specific checks
against upstream data in the cases where that's possible (installation
from origin registry or network mirror) but we'll treat the lock file as
just a flat set of equally-valid hashes, at least one of which must match
after we've completed whatever checks we've made against the
upstream-provided checksums/signatures.
This includes only the minimal internal/getproviders updates required to
make this compile. A subsequent commit will update that package to
actually support the idea of verifying against multiple hashes.
The "acceptable hashes" for a package is a set of hashes that the upstream
source considers to be good hashes for checking whether future installs
of the same provider version are considered to match this one.
Because the acceptable hashes are a package authentication concern and
they already need to be known (at least in part) to implement the
authenticators, here we add AcceptableHashes as an optional extra method
that an authenticator can implement.
Because these are hashes chosen by the upstream system, the caller must
make its own determination about their trustworthiness. The result of
authentication is likely to be an input to that, for example by
distrusting hashes produced by an authenticator that succeeds but doesn't
report having validated anything.
This is the pre-existing hashing scheme that was initially built for
releases.hashicorp.com and then later reused for the provider registry
protocol, which takes a SHA256 hash of the official distribution .zip file
and formats it as lowercase hex.
This is a non-ideal hash scheme because it works only for
PackageLocalArchive locations, and so we can't verify package directories
on local disk against such hashes. However, the registry protocol is now
a compatibility constraint and so we're going to need to support this
hashing scheme for the foreseeable future.
This is the initial implementation of the parser/decoder portion of the
new dependency lock file handler. It's currently dead code because the
caller isn't written yet. We'll continue to build out this functionality
here until we have the basic level of both load and save functionality
before introducing this into the provider installer codepath.
The version constraint parser allows "~> 2", but it behavior is identical
to "~> 2.0". Due to a quirk of the constraint parser (caused by the fact
that it supports both Ruby-style and npm/cargo-style constraints), it
ends up returning "~> 2" with the minor version marked as "unconstrained"
rather than as zero, but that means the same thing as zero in this context
anyway and so we'll prefer to stringify as "~> 2.0" so that we can be
clearer about how Terraform is understanding that version constraint.
If a provider changes namespace in the registry, we can detect this when
running the 0.13upgrade command. As long as there is a version matching
the user's constraints, we now use the provider's new source address.
Otherwise, warn the user that the provider has moved and a version
upgrade is necessary to move to it.
We previously had this just stubbed out because it was a stretch goal for
the v0.13.0 release and it ultimately didn't make it in.
Here we fill out the existing stub -- with a minor change to its interface
so it can access credentials -- with a client implementation that is
compatible with the directory structure produced by the
"terraform providers mirror" subcommand, were the result to be published
on a static file server.
Earlier we introduced a new package hashing mechanism that is compatible
with both packed and unpacked packages, because it's a hash of the
contents of the package rather than of the archive it's delivered in.
However, we were using that only for the local selections file and not
for any remote package authentication yet.
The provider network mirrors protocol includes new-style hashes as a step
towards transitioning over to the new hash format in all cases, so this
new authenticator is here in preparation for verifying the checksums of
packages coming from network mirrors, for mirrors that support them.
For now this leaves us in a kinda confusing situation where we have both
NewPackageHashAuthentication for the new style and
NewArchiveChecksumAuthentication for the old style, which for the moment
is represented only by a doc comment on the latter. Hopefully we can
remove NewArchiveChecksumAuthentication in a future commit, if we can
get the registry updated to use the new hashing format.
The SearchLocalDirectory function was intentionally written to only
support symlinks at the leaves so that it wouldn't risk getting into an
infinite loop traversing intermediate symlinks, but that rule was also
applying to the base directory itself.
It's pretty reasonable to put your local plugins in some location
Terraform wouldn't normally search (e.g. because you want to get them from
a shared filesystem mounted somewhere) and creating a symlink from one
of the locations Terraform _does_ search is a convenient way to help
Terraform find those without going all in on the explicit provider
installation methods configuration that is intended for more complicated
situations.
To allow for that, here we make a special exception for the base
directory, resolving that first before we do any directory walking.
In order to help with debugging a situation where there are for some
reason symlinks at intermediate levels inside the search tree, we also now
emit a WARN log line in that case to be explicit that symlinks are not
supported there and to hint to put the symlink at the top-level if you
want to use symlinks at all.
(The support for symlinks at the deepest level of search is not mentioned
in this message because we allow it primarily for our own cache linking
behavior.)
* internal/getproviders: decode and return any registry warnings
The public registry may include a list of warnings in the "versions"
response for any given provider. This PR adds support for warnings from
the registry and an installer event to return those warnings to the
user.
This is the equivalent of UnpackedDirectoryPathForPackage when working
with the packed directory layout. It returns a path to a .zip file with
a name that would be detected by SearchLocalDirectory as a
PackageLocalArchive package.
We previously had this functionality available for cached packages in the
providercache package. This moves the main implementation of this over
to the getproviders package and then implements it also for PackageMeta,
allowing us to compute hashes in a consistent way across both of our
representations of a provider package.
The new methods on PackageMeta will only be effective for packages in the
local filesystem because we need direct access to the contents in order
to produce the hash. Hopefully in future the registry protocol will be
able to also provide hashes using this content-based (rather than
archive-based) algorithm and then we'll be able to make this work for
PackageMeta referring to a package obtained from a registry too, but
hashes for local packages only are still useful for some cases right now,
such as generating mirror directories in the "terraform providers mirror"
command.
provider is not found.
Previously a user would see the following error even if terraform was
only searching the local filesystem:
"provider registry registry.terraform.io does not have a provider named
...."
This PR adds a registry-specific error type and modifies the MultiSource
installer to check for registry errors. It will return the
registry-specific error message if there is one, but if not the error
message will list all locations searched.
* internal/getproviders: fix panic with invalid path parts
If the search path is missing a directory, the provider installer would
try to create an addrs.Provider with the wrong parts. For example if the
hostname was missing (as in the test case), it would call
addrs.NewProvider with (namespace, typename, version). This adds a
validation step for each part before calling addrs.NewProvider to avoid
the panic.
This is a port of the retry/timeout logic added in #24260 and #24259,
using the same environment variables to configure the retry and timeout
settings.
* internal/registry source: return error if requested provider version protocols are not supported
* getproviders: move responsibility for protocol compatibility checks into the registry client
The original implementation had the providercache checking the provider
metadata for protocol compatibility, but this is only relevant for the
registry source so it made more sense to move the logic into
getproviders.
This also addresses an issue where we were pulling the metadata for
every provider version until we found one that was supported. I've
extended the registry client to unmarshal the protocols in
`ProviderVersions` so we can filter through that list, instead of
pulling each version's metadata.
When looking up the namespace for a legacy provider source, we need to
use the /v1/providers/-/{name}/versions endpoint. For non-HashiCorp
providers, the /v1/providers/-/{name} endpoint returns a 404.
This commit updates the LegacyProviderDefaultNamespace method and the
mock registry servers accordingly.
This commit implements most of the intended functionality of the upgrade
command for rewriting configurations.
For a given module, it makes a list of all providers in use. Then it
attempts to detect the source address for providers without an explicit
source.
Once this step is complete, the tool rewrites the relevant configuration
files. This results in a single "required_providers" block for the
module, with a source for each provider.
Any providers for which the source cannot be detected (for example,
unofficial providers) will need a source to be defined by the user. The
tool writes an explanatory comment to the configuration to help with
this.
* internal/getproviders: apply case normalizations in ParseMultiSourceMatchingPatterns
This is a very minor refactor which takes advantage of addrs.ParseProviderPart case normalization to normalize non-wildcard sources.
An earlier commit added a redundant stub for a new network mirror source
that was already previously stubbed as HTTPMirrorSource.
This commit removes the unnecessary extra stub and changes the CLI config
handling to use it instead. Along the way this also switches to using a
full base URL rather than just a hostname for the mirror, because using
the usual "Terraform-native service discovery" protocol here doesn't isn't
as useful as in the places we normally use it (the mirror mechanism is
already serving as an indirection over the registry protocol) and using
a direct base URL will make it easier to deploy an HTTP mirror under
a path prefix on an existing static file server.
* internal/providercache: verify that the provider protocol version is
compatible
The public registry includes a list of supported provider protocol
versions for each provider version. This change adds verification of
support and adds a specific error message pointing users to the closest
matching version.
This is a placeholder for later implementation of a mirror source that
talks to a particular remote HTTP server and expects it to implement the
provider mirror protocol.
Providers installed from the registry are accompanied by a list of
checksums (the "SHA256SUMS" file), which is cryptographically signed to
allow package authentication. The process of verifying this has multiple
steps:
- First we must verify that the SHA256 hash of the package archive
matches the expected hash. This could be done for local installations
too, in the future.
- Next we ensure that the expected hash returned as part of the registry
API response matches an entry in the checksum list.
- Finally we verify the cryptographic signature of the checksum list,
using the public keys provided by the registry.
Each of these steps is implemented as a separate PackageAuthentication
type. The local archive installation mechanism uses only the archive
checksum authenticator, and the HTTP installation uses all three in the
order given.
The package authentication system now also returns a result value, which
is used by command/init to display the result of the authentication
process.
There are three tiers of signature, each of which is presented
differently to the user:
- Signatures from the embedded HashiCorp public key indicate that the
provider is officially supported by HashiCorp;
- If the signing key is not from HashiCorp, it may have an associated
trust signature, which indicates that the provider is from one of
HashiCorp's trusted partners;
- Otherwise, if the signature is valid, this is a community provider.
Due to other pressures at the time this was implemented, it was tested
only indirectly through integration tests in other packages. This now
introduces tests for the two main entry points on MemoizeSource.
Due to other pressures at the time this was implemented, it was tested
only indirectly through integration tests in other packages.
This now introduces tests for the two main entry points on the
MultiSource, along with its provider-address pattern matching logic.
This does not yet include thorough tests for
ParseMultiSourceMatchingPatterns, because that function still needs some
adjustments to do the same case folding as for normal provider address
parsing, which will follow in a latter commit along with suitable tests.
With that said, the tests added here do _indirectly_ test the happy path
of ParseMultiSourceMatchingPatterns, so we have some incomplete testing
of that function in the meantime.
Earlier on in the stubbing of this package we realized that it wasn't
going to be possible to populate the authentication-related bits for all
packages because the relevant metadata just isn't available for packages
that are already local.
However, we just moved ahead with that awkward design at the time because
we needed to get other work done, and so we've been mostly producing
PackageMeta values with all-zeros hashes and just ignoring them entirely
as a temporary workaround.
This is a first step towards what is hopefully a more intuitive model:
authentication is an optional thing in a PackageMeta that is currently
populated only for packages coming from a registry.
So far this still just models checking a SHA256 hash, which is not a
sufficient set of checks for a real release but hopefully the "real"
implementation is a natural iteration of this starting point, and if not
then at least this interim step is a bit more honest about the fact that
Authentication will not be populated on every PackageMeta.
The fake installable package meta used a ZIP archive which gave
different checksums between macOS and Linux targets. This commit removes
the target from the contents of this archive, and updates the golden
hash value in the test to match. This test should now pass on both
platforms.
We previously had only a stub implementation for a totally-empty
MultiSource. Here we have an initial implementation of the full
functionality, which we'll need to support "terraform init -plugin-dir=..."
in a subsequent commit.
These are some helpers to support unit testing in other packages, allowing
callers to exercise provider installation mechanisms without hitting any
real upstream source or having to prepare local package directories.
MockSource is a Source implementation that just scans over a provided
static list of packages and returns whatever matches.
FakePackageMeta is a shorthand for concisely constructing a
realistic-looking but uninstallable PackageMeta, probably for use with
MockSource.
FakeInstallablePackageMeta is similar to FakePackageMeta but also goes to
the trouble of creating a real temporary archive on local disk so that
the resulting package meta is pointing to something real on disk. This
makes the result more useful to the caller, but in return they get the
responsibility to clean up the temporary file once the test is over.
Nothing is using these yet.
We've been using the models from the "moduledeps" package to represent our
provider dependencies everywhere since the idea of provider dependencies
was introduced in Terraform 0.10, but that model is not convenient to use
for any use-case other than the "terraform providers" command that needs
individual-module-level detail.
To make things easier for new codepaths working with the new-style
provider installer, here we introduce a new model type
getproviders.Requirements which is based on the type the new installer was
already taking as its input. We have new methods in the states, configs,
and earlyconfig packages to produce values of this type, and a helper
to merge Requirements together so we can combine config-derived and
state-derived requirements together during installation.
The advantage of this new model over the moduledeps one is that all of
recursive module walking is done up front and we produce a simple, flat
structure that is more convenient for the main use-cases of selecting
providers for installation and then finding providers in the local cache
to use them for other operations.
This new model is _not_ suitable for implementing "terraform providers"
because it does not retain module-specific requirement details. Therefore
we will likely keep using moduledeps for "terraform providers" for now,
and then possibly at a later time consider specializing the moduledeps
logic for only what "terraform providers" needs, because it seems to be
the only use-case that needs to retain that level of detail.
Previously this was failing to treat symlinks to directories as unpacked
layout, because our file info was only an Lstat result, not a full Stat.
Now we'll resolve the symlink first, allowing us to handle a symlink to
a directory. That's important because our internal/providercache behavior
is to symlink from one cache to another where possible.
There's a lot going on in these functions that can be hard to follow from
the outside, so we'll add some additional trace logging so that we can
more easily understand why things are behaving the way they are.
These new functions allow command implementations to get hold of the
providercache objects and installation source object derived from the
current CLI configuration.
The MultiSource isn't actually properly implemented yet, but this is a
minimal implementation just for the case where there are no underlying
sources at all, because we use an empty MultiSource as a placeholder
when a test in the "command" package fails to explicitly populate a
ProviderSource.
This is not tested yet, but it's a compilable strawman implementation of
the necessary sequence of events to coordinate all of the moving parts
of running a provider installation operation.
This will inevitably see more iteration in later commits as we complete
the surrounding parts and wire it up to be used by "terraform init". So
far, it's just dead code not called by any other package.