TransitiveReduction does not rely on having a single root, and only
must be free of cycles.
DepthFirstWalk and ReverseDepthFirstWalk do not do a topological sort,
so if order matters TransitiveReduction must be run first.
These two functions were left during a refactor to ensure the old
behavior of a sorted walk was still accessible in some manner. The
package has since been removed from any public API, and the sorted
versions are no longer called, so we can remove them.
Create a separate `validateMoveStatementGraph` function so that
`ValidateMoves` and `ApplyMoves` both check the same conditions. Since
we're not using the builtin `graph.Validate` method, because we may have
multiple roots and want better cycle diagnostics, we need to add checks
for self references too. While multiple roots are an error enforced by
`Validate` for the concurrent walk, they are OK when using
`TransitiveReduction` and `ReverseDepthFirstWalk`, so we can skip that
check.
Apply moves must first use `TransitiveReduction` to reduce the graph,
otherwise nodes may be skipped if they are passed over by a transitive
edge.
Changing only the index on a nested module will cause all nested moves
to create cycles, since their full addresses will match both the From
and To addresses. When building the dependency graph, check if the
parent is only changing the index of the containing module, and prevent
the backwards edge for the move.
Add a method for checking if the From and To addresses in a move
statement are only changing the indexes of modules relative to the
statement module.
This is needed because move statement nested within the module will be
able to match against both the From and To addresses, causing cycles in
the order of move operations.
There was an unintended regression in go-getter v1.5.9's GitGetter which
caused us to temporarily fork that particular getter into Terraform to
expedite a fix. However, upstream v1.5.10 now includes a
functionally-equivalent fix and so we can heal that fork by upgrading.
We'd also neglected to update the Module Sources docs when upgrading to
go-getter v1.5.9 originally and so we were missing documentation about the
new "depth" argument to enable shadow cloning, which I've added
retroactively here along with documenting its restriction of only
supporting named refs.
This new go-getter release also introduces a new credentials-passing
method for the Google Cloud Storage getter, and so we must incorporate
that into the Terraform-level documentation about module sources.
Changing only the index on a nested module will cause all nested moves
to create cycles, since their full addresses will match both the From
and To addresses. When building the dependency graph, check if the
parent is only changing the index of the containing module, and prevent
the backwards edge for the move.
This paragraph is trying to say that try only works for dynamic errors and
not for errors that are _not_ based on dynamic decision-making in
expressions.
I'm not sure if this typo was always here or if it was mistakenly "corrected"
at some point, but either way the word "probably" changes the meaning
of this sentence entirely, making it seem like Terraform is hedging
the likelihood of a problem rather than checking exactly for one.
Add a method for checking if the From and To addresses in a move
statement are only changing the indexes of modules relative to the
statement module.
This is needed because move statement nested within the module will be
able to match against both the From and To addresses, causing cycles in
the order of move operations.
When applying module `moved` statements by iterating through modules in
state, we previously required an exact match from the `moved`
statement's `from` field and the module address. This permitted moving
resources directly inside a module, but did not recur into module calls
within those moved modules.
This commit moves that exact match requirement so that it only applies
to `moved` statements targeting resources. In turn this allows nested
modules to be moved.
Resource dependencies are by nature an unordered collection, but they're
persisted to state as a JSON array (in random order). This makes a mess for
`terraform apply -refresh-only`, which sees the new random order as a change
that requires the user to approve a state update.
(As an additional problem on top of that, the user interface for refresh-only
runs doesn't expect to see that as a type of change, so it says "no changes!
would you like to update to reflect these detected changes?")
This commit changes `ResourceInstanceObject.Encode()` to sort the in-memory
slice of dependencies (lexically, by address) before passing it on to be
compared and persisted. This appears to fix the observed UI issues with a
minimum of logic changes.
As the cloud e2e tests evolved some common patters became apparent. This
standardizes and consolidates the patterns into a common test runner
that takes the table tests and runs them in parallel. Some tests also
needed to be converted to utilize table tests.
Previously we would only ever add new lock entries or update existing
ones. However, it's possible that over time a module may _cease_ using
a particular provider, at which point we ought to remove it from the lock
file so that operations won't fail when seeing that the provider cache
directory is inconsistent with the lock file.
Now the provider installer (EnsureProviderVersions) will remove any lock
file entries that relate to providers not included in the given
requirements, which therefore makes the resulting lock file properly match
the set of packages the installer wrote into the cache.
This does potentially mean that someone could inadvertently defeat the
lock by removing a provider dependency, running "terraform init", then
undoing that removal, and finally running "terraform init" again. However,
that seems relatively unlikely compared to the likelihood of removing
a provider and keeping it removed, and in the event it _did_ happen the
changes to the lock entry for that provider would be visible in the diff
of the provider lock file as usual, and so could be noticed in code
review just as for any other change to dependencies.
When showing a saved plan, we do not need to check the state lineage
against current state, because the plan cannot be applied. This is
relevant when plan and apply specify a `-state` argument to choose a
non-default state file. In this case, the stored prior state in the plan
will not match the default state file, so a lineage check will always
error.
instances.Set is only used after all instances have been processes, so
it should therefor only handle known instances and not panic when given
an address that traverses an unexpanded module.
Running tests in parallel can help speed up overall test execution. Go
blocks parent tests while child tests run, so it does not fully fan out
as you might expect. It is noticably faster, though. Running 4 or more
concurrent processes knocks over a minute off the total execution time.
Revert the evaluation change from #29862.
While returning a dynamic value for all expanded resources during
validation is not optimal, trying to work around this using unknown maps
and lists is causing other undesirable behaviors during evaluation.
Earlier versions of this code allowed "ref" to take any value that would
be accepted by "git checkout" as a valid target of a symbolic ref. We
inadvertently accepted a breaking change to upstream go-getter that broke
that as part of introducing a shallow clone optimization, because shallow
clone requires selecting a single branch.
To restore the previous capabilities while retaining the "depth" argument,
here we accept a compromise where "ref" has the stronger requirement of
being a valid named ref in the remote repository if and only if "depth"
is set to a value greater than zero. If depth isn't set or is less than
one, we will do the old behavior of just cloning all of the refs in the
remote repository in full and then switching to refer to the selected
branch, tag, or naked commit ID as a separate step.
This includes a heuristic to generate an additional error message hint if
we get an error from "git clone" and it looks like the user might've been
trying to use "depth" and "ref=COMMIT" together. We can't recognize that
error accurately because it's only reported as human-oriented git command
output, but this heuristic should hopefully minimize situations where we
show it inappropriately.
For now this is a change in the Terraform repository directly, so that we
can expedite the fix to an already-reported regression. After this is
released I tend to also submit a similar set of changes to upstream
go-getter, at which point we can revert Terraform to using the upstream
getter.GitGetter instead of our own local fork.
This is a pragmatic temporary solution to allow us to more quickly resolve
an upstream regression in go-getter locally within Terraform, so that the
work to upstream it for other callers can happen asynchronously and with
less time pressure.
This commit doesn't yet include any changes to address the bug, and
instead aims to be functionally equivalent to getter.GitGetter. A
subsequent commit will then address the regression, so that the diff of
that commit will be easier to apply later to the upstream to get the same
effect there.
A regression introduced in d72a413ef8
The comment explains, but TLDR: The remote backend actually *depended*
on being able to write it's backend state even though an 'error'
occurred (no workspaces).