We've not been using HIL in the main codepaths since Terraform 0.12, but
some references to it (and some supporting functionality in Terraform)
stuck around due to interactions with types we'd kept around to support
legacy shims.
However, removing the configs.RawConfig field from
terraform.ResourceConfig disconnects that subtree of dependencies from
everything else, allowing us to remove it. This is safe because the only
remaining uses of terraform.ResourceConfig are shims from values that
were already evaluated using the HCL 2 API, and thus they never need
the "just in time" HIL evaluation that ResourceConfig.interpolateForce
used to do.
We also had some HIL references in configs/hcl2shim that were previously
in support of the "terraform 0.12upgrade" command, but the implementation
of that command is now removed.
There was one remaining reference to HIL in a now-unused function in the
helper/schema package, which I removed entirely here.
This then allows us to remove the HIL dependency entirely, and also to
clean up some remaining old remants of the legacy "config" package that
we'd recently moved into the "configs" package pending further pruning.
* updating `github.com/Azure/azure-sdk-for-go` to `v45.0.0`
* updating `github.com/Azure/go-autorest` to `v0.11.3`
* updating `github.com/hashicorp/go-azure-helpers` to `v0.12.0`
* updating `github.com/tombuildsstuff/giovanni` to `v0.12.0`
This adds supports for "unmanaged" providers, or providers with process
lifecycles not controlled by Terraform. These providers are assumed to
be started before Terraform is launched, and are assumed to shut
themselves down after Terraform has finished running.
To do this, we must update the go-plugin dependency to v1.3.0, which
added support for the "test mode" plugin serving that powers all this.
As a side-effect of not needing to manage the process lifecycle anymore,
Terraform also no longer needs to worry about the provider's binary, as
it won't be used for anything anymore. Because of this, we can disable
the init behavior that concerns itself with downloading that provider's
binary, checking its version, and otherwise managing the binary.
This is all managed on a per-provider basis, so managed providers that
Terraform downloads, starts, and stops can be used in the same commands
as unmanaged providers. The TF_REATTACH_PROVIDERS environment variable
is added, and is a JSON encoding of the provider's address to the
information we need to connect to it.
This change enables two benefits: first, delve and other debuggers can
now be attached to provider server processes, and Terraform can connect.
This allows for attaching debuggers to provider processes, which before
was difficult to impossible. Second, it allows the SDK test framework to
host the provider in the same process as the test driver, while running
a production Terraform binary against the provider. This allows for Go's
built-in race detector and test coverage tooling to work as expected in
provider tests.
Unmanaged providers are expected to work in the exact same way as
managed providers, with one caveat: Terraform kills provider processes
and restarts them once per graph walk, meaning multiple times during
most Terraform CLI commands. As unmanaged providers can't be killed by
Terraform, and have no visibility into graph walks, unmanaged providers
are likely to have differences in how their global mutable state behaves
when compared to managed providers. Namely, unmanaged providers are
likely to retain global state when managed providers would have reset
it. Developers relying on global state should be aware of this.
This includes a new TargetAddrs field on both Run and RunCreateOptions
which we'll use to send resource addresses that were specified using
-target on the CLI command line when using the remote backend.
There were some unrelated upstream breaking changes compared to the last
version we had vendored, so this commit also includes some changes to the
backend/remote package to work with this new API, which now requires the
remote backend to be aware of the remote system's opaque workspace id.
These are intended to make it easier to work with arbitrary data
structures whose shape might not be known statically, such as the result
of jsondecode(...) or yamldecode(...) of data from a separate system.
For example, in an object value which has attributes that may or may not
be set we can concisely provide a fallback value to use when the attribute
isn't set:
try(local.example.foo, "fallback-foo")
Using a "try to evaluate" model rather than explicit testing fits better
with the usual programming model of the Terraform language where values
are normally automatically converted to the necessary type where possible:
the given expression is subject to all of the same normal type conversions,
which avoids inadvertently creating a more restrictive evaluation model
as might happen if this were handled using checks like a hypothetical
isobject(...) function, etc.
This brings in the new HCL extension functions "try", "can", and
"convert", along with the underlying HCL and cty infrastructure that allow
them to work.
* deps: bump terraform-config-inspect library
* configs: parse `version` in new required_providers block
With the latest version of `terraform-config-inspect`, the
required_providers attribute can now be a string or an object with
attributes "source" and "version". This change allows parsing the
version constraint from the new object while ignoring any given source attribute.
This also includes an upgrade to cty v1.1.1 because HCL calls for it.
The changes in these two libraries are mainly to codepaths that don't
directly affect Terraform, but including this upgrade will cause some
small improvements to Terraform's error messages for type conversion
problems.
Previously we were using the experimental HCL 2 repository, but now we'll
shift over to the v2 import path within the main HCL repository as part of
actually releasing HCL 2.0 as stable.
This is a mechanical search/replace to the new import paths. It also
switches to the v2.0.0 release of HCL, which includes some new code that
Terraform didn't previously have but should not change any behavior that
matters for Terraform's purposes.
For the moment the experimental HCL2 repository is still an indirect
dependency via terraform-config-inspect, so it remains in our go.sum and
vendor directories for the moment. Because terraform-config-inspect uses
a much smaller subset of the HCL2 functionality, this does still manage
to prune the vendor directory a little. A subsequent release of
terraform-config-inspect should allow us to completely remove that old
repository in a future commit.
The dependencies here are dated and are causing conflicts with the
ACME provider, namely the version of the top-level autorest package.
This explicitly updates the Azure SDK and autorest packages, with the
separately versioned sub-packages being added automatically.
This includes a fix to make sure that an expression with a static string
index, like foo["bar"], will be parsed as a traversal rather than as a
dynamic index expression.
This includes a small fix to ensure the parser doesn't produce an invalid
body for block parsing syntax errors, and instead produces an incomplete
result that calling applications like Terraform can still analyze.
The problem here was affecting our version-constraint-sniffing code, which
intentionally tried to find a core version constraint even if there's a
syntax error so that it can report that a new version of Terraform is a
likely cause of the syntax error. It was working in most cases, unless
it was the "terraform" block itself that contained the error, because then
we'd try to analyze a broken hcl.Block with a nil body.
This includes a new test for "terraform init" that exercises this
recovery codepath.