This introduces the terraform state list command to list the resources
within a state. This is the first of many state management commands to
come into 0.7.
This is the first command of many to come that is considered a
"plumbing" command within Terraform (see "plumbing vs porcelain":
http://git.661346.n2.nabble.com/what-are-plumbing-and-porcelain-td2190639.html).
As such, this PR also introduces a bunch of groundwork to support
plumbing commands.
The main changes:
- Main command output is changed to split "common" and "uncommon"
commands.
- mitchellh/cli is updated to support nested subcommands, since
terraform state list is a nested subcommand.
- terraform.StateFilter is introduced as a way in core to filter/search
the state files. This is very basic currently but I expect to make it
more advanced as time goes on.
- terraform state list command is introduced to list resources in a
state. This can take a series of arguments to filter this down.
Known issues, or things that aren't done in this PR on purpose:
- Unit tests for terraform state list are on the way. Unit tests for the
core changes are all there.
* New top level AWS resource aws_eip_association
* Add documentation for aws_eip_association
* Add tests for aws_eip_association
* provider/aws: Change `aws_elastic_ip_association` to have computed
parameters
The AWS API was send ing more parameters than we had set. Therefore,
Terraform was showing constant changes when plans were being formed
Change the AWS DB Instance to now include the DB Option Group param. Adds a test to prove that it works
Add acceptance tests for the AWS DB Option Group work. This ensures that Options can be added and updated
Documentation for the AWS DB Option resource
Here is an example that will setup the following:
+ An SSH key resource.
+ A virtual server resource that uses an existing SSH key.
+ A virtual server resource using an existing SSH key and a Terraform managed SSH key (created as "test_key_1" in the example below).
(create this as sl.tf and run terraform commands from this directory):
```hcl
provider "softlayer" {
username = ""
api_key = ""
}
resource "softlayer_ssh_key" "test_key_1" {
name = "test_key_1"
public_key = "${file(\"~/.ssh/id_rsa_test_key_1.pub\")}"
# Windows Example:
# public_key = "${file(\"C:\ssh\keys\path\id_rsa_test_key_1.pub\")}"
}
resource "softlayer_virtual_guest" "my_server_1" {
name = "my_server_1"
domain = "example.com"
ssh_keys = ["123456"]
image = "DEBIAN_7_64"
region = "ams01"
public_network_speed = 10
cpu = 1
ram = 1024
}
resource "softlayer_virtual_guest" "my_server_2" {
name = "my_server_2"
domain = "example.com"
ssh_keys = ["123456", "${softlayer_ssh_key.test_key_1.id}"]
image = "CENTOS_6_64"
region = "ams01"
public_network_speed = 10
cpu = 1
ram = 1024
}
```
You'll need to provide your SoftLayer username and API key,
so that Terraform can connect. If you don't want to put
credentials in your configuration file, you can leave them
out:
```
provider "softlayer" {}
```
...and instead set these environment variables:
- **SOFTLAYER_USERNAME**: Your SoftLayer username
- **SOFTLAYER_API_KEY**: Your API key
this implements two new resource types:
* openstack_networking_secgroup_v2 - create a neutron security group
* openstack_networking_secgroup_rule_v2 - create a newutron security
group rule
Unlike their nova counterparts the neutron security groups allow a user
to specify the target tenant_id allowing a cloud admin to create per
tenant resources.
* provider/aws: Default Network ACL resource
Provides a resource to manage the default AWS Network ACL. VPC Only.
* Remove subnet_id update, mark as computed value. Remove extra tag update
* refactor default rule number to be a constant
* refactor revokeRulesForType to be revokeAllNetworkACLEntries
Refactor method to delete all network ACL entries, regardless of type. The
previous implementation was under the assumption that we may only eliminate some
rule types and possibly not others, so the split was necessary.
We're now removing them all, so the logic isn't necessary
Several doc and test cleanups are here as well
* smite subnet_id, improve docs
This introduces a provider for Cobbler. Cobbler manages bare-metal
deployments and, to some extent, virtual machines. This initial
commit supports the following resources: distros, profiles, systems,
kickstart files, and snippets.
* CloudFront implementation v3
* Update tests
* Refactor - new resource: aws_cloudfront_distribution
* Includes a complete re-write of the old aws_cloudfront_web_distribution
resource to bring it to feature parity with API and CloudFormation.
* Also includes the aws_cloudfront_origin_access_identity resource to generate
origin access identities for use with S3.
GitHub really doesn't like when you make the H lowercase, it violates
their brand guidelines and they won't help promote anything that doesn't
use the capital H.
It turns out all other providers use `ip_address` where the CloudStack
provider uses `ipaddress`. To make this more consistent this PR
deprecates `ipaddress` and adds `ip_address` where needed…
This brings across the following resources for Triton from the
joyent/triton-terraform repository, and converts them to the canonical
Terraform style, introducing Terraform-style documentation and
acceptance tests which run against the live API rather than the local
APIs:
- triton_firewall_rule
- triton_machine
- triton_key
This brings across the following resources for Triton from the
joyent/triton-terraform repository, and converts them to the canonical
Terraform style, introducing Terraform-style documentation and
acceptance tests which run against the live API rather than the local
APIs:
- triton_firewall_rule
- triton_machine
- triton_key
This adds support for Elastic Beanstalk Applications, Configuration Templates,
and Environments.
This is a combined work of @catsby, @dharrisio, @Bowbaq, and @jen20
This uses the `fmtcmd` package which has recently been merged into HCL. Per
the usage text, this rewrites Terraform config files to their canonical
formatting and style.
Some notes about the implementation for this initial commit:
- all of the fmtcmd options are exposed as CLI flags
- it operates on all files that have a `.tf` suffix
- it currently only operates on the working directory and doesn't accept a
directory argument, but I'll extend this in subsequent commits
- output is proxied through `cli.UiWriter` so that we write in the same way
as other commands and we can capture the output during tests
- the test uses a very simple fixture just to ensure that it is working
correctly end-to-end; the fmtcmd package has more exhaustive tests
- we have to write the fixture to a file in a temporary directory because it
will be modified and for this reason it was easier to define the fixture
contents as a raw string
This resource is the first which makes use of the new Riviera library
(at https://github.com/jen20/riviera), so there is some additional set
up work to add the provider to the client which gets passed among
resources.
also removed the notion of tags from the redshift security group and
parameter group documentation until that has been implemented
Redshift Cluster CRUD and acceptance tests
Removing the Acceptance test for the Cluster Updates. You cannot delete
a cluster immediately after performing an operation on it. We would need
to add a lot of retry logic to the system to get this test to work
Adding some schema validation for RedShift cluster
Adding the last of the pieces of a first draft of the Redshift work - this is the documentation
Changed the aws_redshift_security_group and aws_redshift_parameter_group
to remove the tags from the schema. Tags are a little bit more
complicated than originally though - I will revisit this later
Then added the schema, CRUD functionality and basic acceptance tests for
aws_redshift_subnet_group
Adding an acceptance test for the Update of subnet_ids in AWS Redshift Subnet Group
This commit adds the openstack_lb_member_v1 resource. This resource models a
load balancing member which was previously coupled to the openstack_lb_pool_v1
resource.
By creating an actual member resource, load balancing members can now be
dynamically managed through terraform.
- Add documentation for resources
- Rename files to match standard patterns
- Add acceptance tests for resource groups
- Add acceptance tests for vnets
- Remove ARM_CREDENTIALS file - as discussed this does not appear to be
an Azure standard, and there is scope for confusion with the
azureProfile.json file which the CLI generates. If a standard emerges
we can reconsider this.
- Validate credentials in the schema
- Remove storage testing artefacts
- Use ARM IDs as Terraform IDs
- Use autorest hooks for logging
Conflicts:
builtin/providers/google/provider.go
builtin/providers/google/resource_subscription.go
builtin/providers/google/resource_subscription_test.go
golang pubsub SDK has been released. moved topics/subscriptions to use that
Conflicts:
builtin/providers/google/provider.go
builtin/providers/google/resource_subscription.go
builtin/providers/google/resource_subscription_test.go
file renames and add documentation files
remove typo'd merge and type file move
add to index page as well
only need to define that once
remove topic_computed schema value
I think this was used at one point but is no longer. away.
cleanup typo
adds a couple more config values
- ackDeadlineSeconds: number of seconds to wait for an ack
- pushAttributes: attributes of a push subscription
- pushEndpoint: target for a push subscription
rearrange to better match current conventions
respond to all of the comments
This commit adds further work to the OpenStack port resource:
* Makes relevant fields computed
* Adds state change functions
* Adds acceptance tests
* Adds Documentation
As of this commit this provider has only logical resources that allow
the creation of private keys, self-signed certs and certificate requests.
These can be useful when creating other resources that use TLS
certificates, such as AWS Elastic Load Balancers.
Later it could grow to include support for real certificate provision from
CAs using the LetsEncrypt ACME protocol, once it is stable.
A "Layer" is a particular service that forms part of the infrastructure for
a set of applications. Some layers are application servers and others are
pure infrastructure, like MySQL servers or load balancers.
Although the AWS API only has one type called "Layer", it actually has
a number of different "soft" types that each have slightly different
validation rules and extra properties that are packed into the Attributes
map.
To make the validation rule differences explicit in Terraform, and to make
the Terraform structure more closely resemble the OpsWorks UI than its
API, we use a separate resource type per layer type, with the common code
factored out into a shared struct type.
"Stack" is the root concept in OpsWorks, and acts as a container for a number
of different "layers" that each provide some service for an application.
A stack isn't very interesting on its own, but it needs to be created before
any layers can be created.
Here we add an OpsWorks client instance to the central client bundle and
establish a new documentation section, both of which will be fleshed out in
subsequent commits that add some OpsWorks resources.
AWS provides three different ways to create AMIs that each have different
inputs, but once they are complete the same management operations apply.
Thus these three resources each have a different "Create" implementation
but then share the same "Read", "Update" and "Delete" implementations.
Common metadata state is now stored
Optimistic locking support added to common_metadata
Revisions to keys in project metadata are now reflected in the project state
Wrote tests for project metadata (all pass)
Relaxed test conditions to work on projects with extra keys
Added documentation for project metadata
* upstream/master:
Update CHANGELOG.md
Update CHANGELOG.md
provider/aws: allow external ENI attachments
Update AWS provider documentation
docs/aws: Fix example of aws_iam_role_policy
provider/aws: S3 bucket test that should fail
provider/aws: Return if Bucket not found
Update CHANGELOG.md
Update CHANGELOG.md
helper/schema: record schema version when destroy fails
settings file is not required
provider/azure: Allow settings_file to accept XML string
add note to aws_iam_policy_attachment explaining its use/limitations
docs: clarify template_file path information
google: Sort resources by alphabet in docs
Support go get in go 1.5
Update CHANGELOG.md
aws_network_interface attachment block is not required
provider/aws: Fix issue in Security Group Rules where the Security Group is not found
With so many AWS provider resources, the docs are getting pretty hard
to navigate. This is particularly true due to the mismatch of some
resources encoding the service name (like aws_route53_record) but some
others ignoring it (like aws_subnet) or using a generic prefix (like
aws_db_instance), which causes an alphabetical ordering to muddle
up all of the services.
Since the AWS UI and docs are themselves oriented around services, most
users should be familiar with the service brands and understand which
resources belong to which service. Thus this categorization follows the
primary categorization used within the AWS Console, preferring EC2-VPC
over EC2-Classic-style bucketing.
* master:
Update CHANGELOG.md
Update CHANGELOG.md
Added affinity group resource.
update link to actually work
provider/azure: Fix SQL client name to match upstream
add warning message to explain scenario of conflicting rules
typo
remove debugging
Update CHANGELOG.md
provider/aws: Add docs for autoscaling_policy + cloudwatch_metric_alarm
provider/aws: Add autoscaling_policy
provider/aws: Add cloudwatch_metric_alarm
rename method, update docs
clean up some conflicts with
clean up old, incompatible test
update tests with another example
update test
remove meta usage, stub test
fix existing tests
Consider security groups with source security groups when hashing
This is an iteration on the great work done by @dalehamel in PRs #2095
and #2109.
The core team went back and forth on how to best model Spot Instance
Requests, requesting and then rejecting a separate-resource
implementation in #2109.
After more internal discussion, we landed once again on a separate
resource to model Spot Instance Requests. Out of respect for
@dalehamel's already-significant donated time, with this I'm attempting
to pick up the work to take this across the finish line.
Important architectural decisions represented here:
* Spot Instance Requests are always of type "persistent", to properly
match Terraform's declarative model.
* The spot_instance_request resource exports several attributes that
are expected to be constantly changing as the spot market changes:
spot_bid_status, spot_request_state, and instance_id. Creating
additional resource dependencies based on these attributes is not
recommended, as Terraform diffs will be continually generated to keep
up with the live changes.
* When a Spot Instance Request is deleted/canceled, an attempt is made
to terminate the last-known attached spot instance. Race conditions
dictate that this attempt cannot guarantee that the associated spot
instance is terminated immediately.
Implementation notes:
* This version of aws_spot_instance_request borrows a lot of common
code from aws_instance.
* In order to facilitate borrowing, we introduce `awsInstanceOpts`, an
internal representation of instance details that's meant to be shared
between resources. The goal here would be to refactor ASG Launch
Configurations to use the same struct.
* The new aws_spot_instance_request acc. test is passing.
* All aws_instance acc. tests remain passing.