The clistate package includes a Locker interface which provides a simple
way for the local backend to lock and unlock state, while providing
feedback to the user if there is a delay while waiting for the lock.
Prior to this commit, the backend was responsible for initializing the
Locker, passing through direct access to the cli.Ui instance.
This structure prevented commands from implementing different
implementations of the state locker UI. In this commit, we:
- Move the responsibility of creating the appropriate Locker to the
source of the Operation;
- Add the ability to set the context for a Locker via a WithContext
method;
- Replace the Locker's cli.Ui and Colorize members with a StateLocker
view;
- Implement views.StateLocker for human-readable UI;
- Update the Locker interface to return detailed diagnostics instead of
errors, reducing its direct interactions with UI;
- Add a Timeout() method on Locker to allow the remote backend to
continue to misuse the -lock-timeout flag to cancel pending runs.
When an Operation is created, the StateLocker field must now be
populated with an implementation of Locker. For situations where locking
is disabled, this can be a no-op locker.
This change has no significant effect on the operation of Terraform,
with the exception of slightly different formatting of errors when state
locking or unlocking fails.
Commit e865faf adds visual indentation for diagnostic messages using various
vertical line characters. The present commit disables this behaviour when
running with colourised output disabled.
While the contents of stderr are not intended to be part of the Terraform API,
this is currently how the hashicorp/terraform-exec library detects certain
error types in order to present them as well-known Go errors to the user. Such
detection is complicated when vertical lines are added to the CLI output at
unpredictable points.
I expect this change will also be helpful for screen reader users.
Adds a test to make sure that this text doesn't accidentally
get tabs added, without having a test that simply direct matches
the whole strings (which would be brittle to adding a tab to the
test validation)
I frequently see people attempting to ask questions about Terraform's
error and warning messages but either only copying part of the message or
accidentally copying a surrounding paragraph that isn't part of the
message.
While I'm sure some of these are just "careless" mistakes, I've also
noticed that this has sometimes overlapped with someone asking a question
whose answer is written directly in the part of the message they didn't
include when copying, and so I have a theory that our current output
doesn't create a good enough visual hierarchy for sighted users to
understand where the diagnostic messages start and end when we show them
in close proximity to other content, or to other diagnostic messages.
As a result, some folks fail to notice the relevant message that might've
answered their question.
I tried a few different experiments for different approaches here, such
as adding more horizontal rules to the output and coloring the detail
text differently, but the approach that felt like the nicest compromise
to me was what's implemented here, which is to add a vertical line
along the left edge of each diagnostic message, colored to match with the
typical color we use for each diagnostic severity. This means that the
diagnostics end up slightly indented from what's around them, and the
vertical line seems to help subtly signal how we intended the content
to be grouped together.
In some terminal emulators, writing a character into the last column on a
row causes the terminal to immediately wrap to the beginning of the next
line, even if the very next character in the stream is a hard newline.
That can then lead to errant blank lines in the final output which make
it harder to navigate the visual hierarchy.
As a compromise to avoid this, we'll format our horizontal rules and
paragraphs to one column less than the terminal width. That does mean that
our horizontal rules won't _quite_ cover the whole terminal width, but
it seems like a good compromise in order to get consistent behavior across
a wider variety of terminal implementations.
When running state mv with a resource source, but the destination
fails, provide a hint that the source is a resource (not an instance)
in case the user means to address it this way
Using the addrTo after it has failed its check means <invalid>/no
address will be printed. Change this throughout, but particularly
add a test for the origin issue for this.
helper/copy CopyDir was used heavily in tests. It differes from
internal/copydir in a few ways, the main one being that it creates the
dst directory while the internal version expected the dst to exist
(there are other differences, which is why I did not just switch tests
to using internal's CopyDir).
I moved the CopyDir func from helper/copy into command_test.go; I could
also have moved it into internal/copy and named it something like
CreateDirAndCopy so if that seems like a better option please let me
know.
helper/copy/CopyFile was used in a couple of spots so I moved it into
internal, at which point I thought it made more sense to rename the
package copy (instead of copydir).
There's also a `go mod tidy` included.
When moving a resource block with multiple instances to a new address
within the same module, we need to ensure that the target module is
present as late as possible. Otherwise, deleting the resource from the
original address triggers pruning, and the module is removed just before
we try to add the resource to it, which causes a crash.
Includes regression test which panics without this code change.
The only situation where `state mv` needs to understand the each mode is
when with resource addresses that may reference a single instance, or a
group of for_each or count instances. In this case we can differentiate
the two by checking the existence of the NoKey instance key.
a large refactor to addrs.AbsProviderConfig, embedding the addrs.Provider instead of a Type string. I've added and updated tests, added some Legacy functions to support older state formats and shims, and added a normalization step when reading v4 (current) state files (not the added tests under states/statefile/roundtrip which work with both current and legacy-style AbsProviderConfig strings).
The remaining 'fixme' and 'todo' comments are mostly going to be addressed in a subsequent PR and involve looking up a given local provider config's FQN. This is fine for now as we are only working with default assumption.
* Introduce "Local" terminology for non-absolute provider config addresses
In a future change AbsProviderConfig and LocalProviderConfig are going to
become two entirely distinct types, rather than Abs embedding Local as
written here. This naming change is in preparation for that subsequent
work, which will also include introducing a new "ProviderConfig" type
that is an interface that AbsProviderConfig and LocalProviderConfig both
implement.
This is intended to be largely just a naming change to get started, so
we can deal with all of the messy renaming. However, this did also require
a slight change in modeling where the Resource.DefaultProviderConfig
method has become Resource.DefaultProvider returning a Provider address
directly, because this method doesn't have enough information to construct
a true and accurate LocalProviderConfig -- it would need to refer to the
configuration to know what this module is calling the provider it has
selected.
In order to leave a trail to follow for subsequent work, all of the
changes here are intended to ensure that remaining work will become
obvious via compile-time errors when all of the following changes happen:
- The concept of "legacy" provider addresses is removed from the addrs
package, including removing addrs.NewLegacyProvider and
addrs.Provider.LegacyString.
- addrs.AbsProviderConfig stops having addrs.LocalProviderConfig embedded
in it and has an addrs.Provider and a string alias directly instead.
- The provider-schema-handling parts of Terraform core are updated to
work with addrs.Provider to identify providers, rather than legacy
strings.
In particular, there are still several codepaths here making legacy
provider address assumptions (in order to limit the scope of this change)
but I've made sure each one is doing something that relies on at least
one of the above changes not having been made yet.
* addrs: ProviderConfig interface
In a (very) few special situations in the main "terraform" package we need
to make runtime decisions about whether a provider config is absolute
or local.
We currently do that by exploiting the fact that AbsProviderConfig has
LocalProviderConfig nested inside of it and so in the local case we can
just ignore the wrapping AbsProviderConfig and use the embedded value.
In a future change we'll be moving away from that embedding and making
these two types distinct in order to represent that mapping between them
requires consulting a lookup table in the configuration, and so here we
introduce a new interface type ProviderConfig that can represent either
AbsProviderConfig or LocalProviderConfig decided dynamically at runtime.
This also includes the Config.ResolveAbsProviderAddr method that will
eventually be responsible for that local-to-absolute translation, so
that callers with access to the configuration can normalize to an
addrs.AbsProviderConfig given a non-nil addrs.ProviderConfig. That's
currently unused because existing callers are still relying on the
simplistic structural transform, but we'll switch them over in a later
commit.
* rename LocalType to LocalName
Co-authored-by: Kristin Laemmert <mildwonkey@users.noreply.github.com>
Clear any Dependencies if there is an entry matching a `state mv` from
address. While stale dependencies won't directly effect any current
operations, clearing the list will allow them to be recreated in their
entirety during refresh. This will help future releases that may rely
solely on the pre-calculated dependencies for destruction ordering.
* huge change to weave new addrs.Provider into addrs.ProviderConfig
* terraform: do not include an empty string in the returned Providers /
Provisioners
- Fixed a minor bug where results included an extra empty string
If a state mv target happens to be a resource that doesn't exist, allow
the creation of the new resource inferring the EachMode from the target
address.
Create the missing modules in the state when moving resources to a
module that doesn't yet exist. This allows for refactoring of
configuration into new modules, without having to create dummy resources
in the module before the "state mv" operations.
In earlier refactoring we updated these commands to support the new
address and state types, but attempted to partially retain the old-style
"StateFilter" abstraction that originally lived in the Terraform package,
even though that was no longer being used for any other functionality.
Unfortunately the adaptation of the existing filtering to the new types
wasn't exact and so these commands ended up having a few bugs that were
not covered by the existing tests.
Since the old StateFilter behavior was the source of various misbehavior
anyway, here it's removed altogether and replaced with some simpler
functions in the state_meta.go file that are tailored to the use-cases of
these sub-commands.
As well as just generally behaving more consistently with the other
parts of Terraform that use the new resource address types, this commit
fixes the following bugs:
- A resource address of aws_instance.foo would previously match an
resource of that type and name in any module, which disagreed with the
expected interpretation elsewhere of meaning a single resource in the
root module.
- The "terraform state mv" command was not supporting moves from a single
resource address to an indexed address and vice-versa, because the old
logic didn't need to make that distinction while they are two separate
address types in the new logic. Now we allow resources that do not have
count/for_each to be treated as if they are instances for the purposes
of this command, which is a better match for likely user intent and for
the old behavior.
Finally, we also clean up a little some of the usage output from these
commands, which hasn't been updated for some time and so had both some
stale information and some inaccurate terminology.
This command isn't yet updated for the new state types, but since we were
not returning a non-successful error status here the tests were just
failing in a weird way instead. Now we'll fail with a message that makes
it clear there is still work to do in the real implementation here.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
In order to use a backend for the state commands, we need an initialized
meta. Use a single Meta instance rather than temporary ones to make sure
the backends are initialized properly.
When using a `state` command, if the `-state` flag is provided we do not
want to modify the Backend state. In this case we should always create a
local state instance.
The backup flag was also being ignored, and some tests were relying on
that, which have been fixed.
If we provide a -state flag to a state command, we do not want terraform
to modify the backend state. This test fails since the state specified
in the backend doesn't exist
Previously we did plugin discovery in the main package, but as we move
towards versioned plugins we need more information available in order to
resolve plugins, so we move this responsibility into the command package
itself.
For the moment this is just preserving the existing behavior as long as
there are only internal and unversioned plugins present. This is the
final state for provisioners in 0.10, since we don't want to support
versioned provisioners yet. For providers this is just a checkpoint along
the way, since further work is required to apply version constraints from
configuration and support additional plugin search directories.
The automatic plugin discovery behavior is not desirable for tests because
we want to mock the plugins there, so we add a new backdoor for the tests
to use to skip the plugin discovery and just provide their own mock
implementations. Most of this diff is thus noisy rework of the tests to
use this new mechanism.
Module resource were being sorted lexically by name by the state filter.
If there are 10 or more resources, the order won't match the index
order, and resources will have different indexes in their new location.
Sort the FilterResults by index numerically when the names match.
Clean up the module String output for visual inspection by sorting
Resource name parts numerically when they are an integer value.
Fixes#12154
The "-backup" flag before for "state *" CLI had some REALLY bizarre behavior:
it would change the _destination_ state and actually not create any
additional backup at all (the original state was unchanged and the
normal timestamped backup still are written). Really weird.
This PR makes the -backup flag work as you'd expect with one caveat:
we'll _still_ create the timestamped backup file. The timestamped backup
file helps make sure that you always get a backup history when using
these commands. We don't want to make it easy for you to overwrite a
state with the `-backup` flag.